История прекрасной болезни: как рентген помогает изучать картины. Картина рентген


как художники прятали и преображали свои картины — РТ на русском

Иногда оказывается, что судьба известных полотен разных эпох и направлений была куда загадочнее, чем считали историки искусства. Используя современные технологии, исследователи узнают, что скрывается под верхними слоями краски. RT рассказывает о легендарных случаях, когда художники писали новые картины поверх старых.

Загадочная улыбка в ярких лучах

Одна из самых известных картин в мире — портрет Моны Лизы кисти Леонардо да Винчи — не перестаёт интересовать исследователей.

В 2015 году француз Паскаль Котт сообщил о результатах изучения картины с помощью собственной авторской методики. Он использовал так называемый метод амплификации слоёв: на холст несколько раз направляют яркий свет, а камера делает снимки, фиксируя отражённые лучи. После этого по анализу полученных снимков можно изучить все слои краски.

  • globallookpress.com
  • © Daniel Karmann

По словам исследователя, под тем портретом, который виден, скрыт другой — и на нём нет никакой улыбки: Котту удалось рассмотреть более крупную голову, нос и руки. Более того, он заявил, что слоёв на картине больше двух, и якобы на одном из первых вариантов также можно увидеть Деву Марию.

Научные сотрудники Лувра, где хранится портрет, никак не прокомментировали предполагаемое открытие. Другие исследователи выразили сомнение в выводах Котта. Они склоняются к тому, что принципиально иных изображений на холсте не было, просто французу удалось рассмотреть разные этапы работы над одним портретом. Так, да Винчи, писавший картину по заказу, мог изменять её по своему желанию или по просьбе заказчика.

Портрет под цветами

В конце XIX века Винсент Ван Гог написал знаменитую картину «Лоскут травы». На ней, как ни удивительно, под пышной зеленью также обнаружился более ранний слой краски.

  • © Wikimedia / ARTinvestment.RU

Выяснилось, что первым на холсте появился портрет женщины, выполненный в коричневых и красных тонах. У учёных этот случай почти не вызвал удивления: известно, что Ван Гог не был признан при жизни и из-за финансовых трудностей часто писал новые картины поверх старых.

От зачарованной позы к философским мотивам

Картина бельгийского художника Рене Магритта «Зачарованная поза», написанная в 1927 году, считалась утерянной спустя пять лет. Много позже сотрудница музея в Норфолке перед отправкой полотна «Удел человеческий» на выставку проводила надлежащую проверку. На краю холста она заметила краску, никак не вписывающуюся в общую цветовую гамму. Дальше на помощь пришёл рентген — благодаря ему исследователи часто определяют, что находится под верхним слоем картины.

Как оказалось, «Удел человеческий» написан поверх одного из фрагментов «Зачарованной позы» — создатель разрезал её на четыре части, и на сегодня обнаружены три из них. Искусствоведы находят утешение в том, что, по крайней мере, Магритт не просто уничтожил своё творение, а написал на его остатках ещё несколько работ, достойных внимания публики. Печально же то, что частично найденное произведение искусства никак не получится отделить от более поздних работ. Загадкой остаются и причины, по которым художник решил расправиться со своей картиной.

Что скрывается в «Чёрном квадрате»

Искусствоведы Третьяковской галереи нашли скрытые изображения под одной из самых узнаваемых картин в мире — «Чёрным квадратом» Казимира Малевича. Под чёрной краской художник спрятал надпись. Её расшифровали как «битва негров ночью». Что же касается картины, которую, вероятно, сначала пытался создать Малевич, то нарисованное на ней смогли частично восстановить. Самый ранний и наиболее основательный по сравнению с более поздними слой краски представляет собой произведение, близкое, по словам исследователей, к кубофутуристическим работам автора.

Нужно отметить, что вначале картина была гораздо более яркой, чем окончательный вариант. Закрашенное изображение выявили ещё в начале 1990-х годов. При этом методов, которые позволили сделать такие выводы, использовалось довольно много. Картину изучили в инфракрасном и ультрафиолетовом спектре, провели макросъёмку и рентгенографирование, а также проанализировали пигмент с помощью микроскопа. О причинах, побудивших автора создать чёрный квадрат именно на этом холсте, ничего не известно. Основные версии искусствоведов сводятся к тому, что в процессе работы замысел художника постепенно менялся.

Сплошные превращения

Ничуть не реже на картинах менялись и отдельные элементы. Например, поистине удивительна история одного из полотен Рафаэля.

Около 1506 года Рафаэль Санти написал портрет девушки с собачкой на руках. А потом, многие годы спустя поверх собачки нарисовал единорога (пса учёные разглядели, просветив картину рентгеном). Но главное — это полотно, известное под названием «Дама с единорогом», ранее вообще именовалось «Святая Екатерина Александрийская». Дело в том, что после смерти Рафаэля другие художники добавили «даме» атрибуты мученицы и снабдили её плащом. И только в XX веке учёные сняли дорисованный слой и восстановили картину. Правда, на руках «дамы» так и остался единорог: по словам специалистов, попытки добраться до «первоначальной» собачки весьма рискованны и могут привести к порче произведения искусства.

russian.rt.com

ИССЛЕДОВАНИЕ КАРТИН РЕНТГЕНОВСКИМИ И УЛЬТРАФИОЛЕТОВЫМИ ЛУЧАМИ

Сильченко Т.Н.

1. Рентгеновские лучи и картина

Днем открытия Рентгеном «нового рода лучей» считается 8 ноября 1895 г. Уже в следующем году Рентген с помощью открытых лучей исследовал, наряду с другими материалами, различные пигменты. Одновременно некоторым физикам удавалось получать на рентгенограммах контуры изображений на картине. Это были первые лабораторные опыты, практическое применение для исследования картин рентгеновских лучей начинается в конце первой четверти XX в. и завоевывает должное место среди других методов исследования материальной части картин лишь постепенно и не без возражений. Высказывались мнения, что время и средства, затрачиваемые на рентгеновское исследование, не окупаются теми результатами, которые они дают, что рентгеновские лучи могут нанести вред картине. Главной причиной таких и подобных им возражений было неумение полностью использовать результаты исследования и недостаточное знание физико-химических свойств как рентгеновских лучей, так и самой картины. В настоящее время окончательно установлено, как теоретически — на основе глубокого изучения природы рентгеновских лучей, так и практически — на основании тщательной проверки на опыте, что доза рентгеновских лучей даже в миллион раз большая, чем та, которая (в среднем) нужна для получения снимка с картины, не причиняет ей никакого вреда и никак не может отразиться на дальнейшем ее существовании. На первых порах препятствием для широкого внедрения в музейную практику рентгеновского метода исследования были несовершенство необходимой аппаратуры, высокая стоимость и сложность ее использования, требовавшая участия в то время малочисленных специалистов-рентгенологов. Ныне все эти осложнения отпали, и только инертностью музейных работников можно объяснить то, что ценнейший метод исследования еще не вошел в повседневную практику всех советских музеев и реставрационных мастерских так же крепко, как он вошел в медицину и в другие области науки и техники. Особо большую ценность приобретает исследование картин рентгеновскими лучами, если оно производится параллельно с исследованием в ультрафиолетовых лучах (люминесцентным методом), иногда и с помощью бинокулярной лупы. Такое комплексное исследование, обнаруживая то, что скрыто внутри картины и что не видно в обычном свете на ее поверхности, дает ценнейшие данные о материальной части картины, необходимые не только реставратору, но и искусствоведу, художнику и хранителю. Другие методы, например химический анализ, так же могут с успехом применяться для исследования картин, но они требуют особого оборудования и специалистов; необходимость таких исследований возникает в исключительных случаях; внедрение их в повседневную практику музейных работников в той степени, как это должно быть с рентгеновским и люминесцентным методами, менее необходимо; поэтому в настоящей статье речь идет лишь об этих двух методах.

Данные о природе рентгеновских лучей и об их физико-химических свойствах можно найти не только в поистине необъятной литературе — научной и популярной, но и в любом современном учебнике физики. Техника практического использования их в различных областях подробно излагается в соответствующих руководствах, поэтому в настоящей статье очень кратко приводятся основные положения, имеющие непосредственное отношение к практике исследования картин.

Применение рентгеновских лучей для исследования картин основано на том, что лучи, проходя через картину, при благоприятных условиях дают изображение на флюоресцирующем экране или снимок на фотопленке. Практика подсказывает пользоваться только снимками, а не просвечиванием, потому что: 1) при просвечивании нельзя уловить, а тем более запомнить все мельчайшие детали, какие фиксируются на снимках; 2) при исследовании больших картин технически трудно пользоваться экраном; 3) проводить просвечивание возможно только в полной темноте, экран же, твердый и тяжелый (благодаря свинцовому стеклу), необходимо плотно прижимать к картине, что может повести к повреждению ее; 4) рентгеновский снимок является объективным документом, всегда готовым для демонстрации, сопоставления и сравнения с рядом других снимков, а это чрезвычайно важно при изучении как одной картины, так, в особенности, серии картин, например при изучении техники того или иного мастера или школы. Накопление архива рентгеновских снимков картин является одной из важнейших задач каждого большого музея.

По волновой теории света рентгеновские лучи представляют собой электромагнитные колебания с длиной волн от 725 до 0,10 А°. 1 От длины волн в значительной степени зависят свойства рентгеновских лучей и, в частности, их проникающая способность: чем волны короче, тем больше проникающая сила лучей, или, как принято говорить, они жестче, и, наоборот, чем длиннее волны, тем меньше их проникающая сила, — они мягче. Определение «жесткие» и «мягкие» лучи условно и недостаточно характеризует действительные свойства данного пучка лучей: мягкие для одной цели, могут оказаться слишком жесткими для другой. Обозначение в длинах волн имеет научное значение. В практике при пользовании трубками с накаленным катодом принято определять жесткость киловольтажем, т. е. тем напряжением электрического тока, которое подается на трубку, так как в зависимости от него изменяются длины волн в излучаемом пучке, и этим обусловливается проникающая способность: чем выше киловольтаж, тем жестче лучи. Выбор той или иной жесткости определяется прозрачностью исследуемого предмета для рентгеновских лучей. Для некоторого пояснения можно сказать, что для исследования различных металлических изделий требуются жесткие лучи, для исследования человеческого тела — средние, Для исследования картин — мягкие (около 30 киловольт). Пучок рентгеновских лучей состоит из смеси лучей различной длины волн (подобно видимому «белому» свету), причем самые короткие соответствуют высоте приложенного киловольтажа, а самые длинные (при работе с обычной диагностической трубкой) — тем, которые образуются при 15 киловольтах, так как лучи более мягкие отфильтровываются стеклянной стенкой трубки.

При прохождении пучка лучей через какой-либо предмет (например, картину) мягкие лучи задерживаются в большей степени, чем жесткие, благодаря чему происходит не только общее количественное ослабление, но изменяется и соотношение мягких и жестких лучей в пучке в сторону процентного увеличения количества жестких лучей. Практически ослабление интенсивности, т. е. разница между той интенсивностью лучей, с какой они вышли из трубки, и той, с какой они, пройдя через снимаемый объект, подействуют на фотопленку, зависит от химического состава объекта и его толщины: ослабление пропорционально 4-й степени порядкового номера элемента по таблице Менделеева и 3-й степени длины волны; причем ослабление быстро увеличивается с увеличением толщины слоя вещества, через которое лучи проходят, в особенности при мягких лучах.

На картине разница толщины различных участков в большинстве случаев не особенно велика и на задерживании рентгеновских лучей при получении снимка сказывается в меньшей степени, чем химический состав тех материалов, из которых она построена; например, даже толстый слой (в масштабах картины) охры задерживает рентгеновские лучи значительно слабее, чем тонкий слой свинцовых белил или чистого золота. Это становится понятным, если учитывать, что задерживающая способность определяется не просто порядковым номером элемента, а его 4-й степенью. Например, соотношение порядковых номеров железа (26) и свинца (82) будет всего лишь около 1:3, а соотношение их 4-х степеней будет около 1:110, так же для цинка (30) и свинца (82) соотношение их 4-х степеней будет приблизительно 1 : 56.

Для

кальция (20) и

свинца

(82)

1:282,5

"

меди (29)

"

"

1:64

"

серебра (47)

"

"

1:9,5

"

золота (79)

"

"

1:1,2

"

ртути (80)

"

"

1:1,1

(в таблице приведены металлы, соединениями которых являются пигменты, наиболее часто употребляемые в живописи).

Для того чтобы определить, насколько значительно будет задерживать рентгеновские лучи вещество, состоящее из нескольких элементов (а все материалы, из которых строится картина, именно таковы), надо было бы подсчитать сумму задерживающей силы каждого элемента и его количество. Разумеется, в практике исследования картин подобных расчетов не приходится делать, хотя бы потому, что не бывает известен точный химический состав красок и их соотношения на том или ином участке картины (при смешении или наложении их друг на друга). Вышеприведенные сведения даны лишь для того, чтобы показать, какие свойства материалов, из которых строится картина, создают наиболее благоприятные условия для получения четкого, богатого деталями рентгеновского снимка и какую технику съемки надо применять.

Как объект для рентгеновского снимка, картина по сравнению с другими объектами имеет следующие преимущества: небольшую толщину и плоскую поверхность; неподвижность, относительную прозрачность для рентгеновских лучей. Благодаря этому, при правильной технике можно получить максимальную для данной картины контрастность и резкость снимка, потому что: 1) почти полностью исключается действие рассеянных лучей, а также «смазанность» рисунка от движения объекта при любой длительности экспозиции; 2) можно обеспечить плотное и равномерное прилегание пленки; 3) используются мягкие лучи, которые дают наибольшую контрастность снимка. Неблагоприятные же условия создаются в том случае, если картина выполнена красками, задерживающими лучи слабее, чем ее основа или грунт, или мало различающимися между собой по прозрачности для рентгеновских лучей. У большинства картин, в особенности старых мастеров, грунт, благодаря отсутствию или малому количеству в нем свинцовых красок, довольно прозрачен для рентгеновских лучей.

Краски, обычные в темперной и масляной живописи, практически (условно) можно разделить на четыре группы:

1. Органические (крапплаки, черные, например сажа).

2. Производные металлов с малым порядковым номером или с небольшим процентным содержанием металла (охры и т. п.).

3. Производные металлов со средними порядковыми номерами (цинковые, медные).

4. Производные тяжелых металлов (свинца, ртути).

Для лучей той жесткости, которая применяется при исследовании картин и при обычной толщине слоя красок, первые две группы, как и связующее и покровные лаки, полностью проходимы для рентгеновских лучей и на рентгенограммах дают участки максимальной для данного снимка плотности. Краски третьей группы задерживают лучи довольно слабо и только при достаточной толщине слоя они создают общий фон снимка средней плотности («серый») без резких границ, со слабо выраженными светотенями (полутонами). На этом фоне с различной четкостью выступают более темные места, соответствующие участкам картины, выполненным первой или второй группой, и более светлые, иногда совсем прозрачные, соответствующие деталям, выполненным красками четвертой группы.

Исключительно большую роль играют свинцовые белила. Из всех красок они наиболее значительно задерживают рентгеновские лучи; к тому же редко можно найти картину, которая не содержала бы свинцовых белил или в чистом виде, или в виде «разбела», т. е. в смешении с другими красками (только в более поздних картинах — с начала второй четверти XIX в. — свинцовые белила иногда частично или полностью заменяются цинковыми). Поэтому полнота изображения картины на рентгеновском снимке бывает обусловлена почти исключительно количеством и распределением на ней свинцовых белил. Очень большое влияние на характер снимка (в смысле воспроизведения изображения) оказывает и техника живописи: при послойном письме, когда предварительно прописывался подмалевок, с подробностями в деталях и светотенях, с применением свинцовых белил, а затем уже покрывался лессировками, на рентгенограмме получается воспроизведение картины, близкое к обычной фотографии (а иногда даже более детализированное). При однослойной технике, когда необходимый цвет или оттенок получается смешением красок на палитре, снимок может не давать четких контуров и богатых контрастов. Отсюда понятна большая роль подмалевка — именно от него зависит та или иная полнота изображения на снимке; лессировки, выполненные обычно очень тонким слоем и красками, прозрачными для рентгеновских лучей (и обычного света), на рентгеновском снимке теней не дают.

___________

1А° = 10-8см.

Первоисточник: 

Реставрация и исследование художественных памятников. Сборник статей. ГЭ М., 1955

art-con.ru

История прекрасной болезни: как рентген помогает изучать картины | Futurist

Автор: Павел Войтовский  |  7 сентября 2016, 12:10

Бельгийские физики выяснили, что пятно на картине Эдварда Мунка «Крик» — это воск, а не птичий помет, как считалось ранее. Вывод простой, но чтобы его сделать, понадобились сложные технологии. В последние годы полотна Малевича, Ван Гога, Рембрандта раскрылись для нас с новой стороны благодаря рентгену и другим научным инструментам. Как физика оказалась на службе лирики, рассказывает Павел Войтовский.

Картина

Эдвард Мунк написал четыре версии «Крика». Наиболее известная находится в Национальном музее Норвегии в Осло. Как назло, на самом видном месте шедевра красуется клякса. До сих пор существовало две главные версии происхождения пятна: это птичий помет или знак, оставленный самим художником.

Вторую версию оказалось проверить проще. Для этой цели ученые из Университета Антверпена в Бельгии использовали рентгенофлуоресцентный спектрометр MA-XRF. Картину облучили рентгеном и замерили отраженную энергию, свою для каждого элемента таблицы Менделеева. На месте кляксы не обнаружили следов свинца или цинка, которые присутствовали в белилах начала века, а также кальция — это значит, что пятно, скорее всего, не входило в планы Мунка.

Однако первая версия с птичьим пометом считалась у искусствоведов гораздо более слабой. Не потому, что это некрасиво, а по причинам строго научным: помет разъедает краску, чего на картине Мунка не заметно. Чтобы поставить точку в споре, фрагмент кляксы отвезли в Гамбург и поместили в синхротрон DESY, крупнейший ускоритель частиц в Германии. В основе техники — опять рентген, только используется явление не флуоресценции, а дифракции. Атомы различных элементов преломляют рентгеновские лучи по-разному. Сравнив графики преломления трех субстанций — птичьего помета, свечного воска и пятна на картине Мунка, — исследователи получили одинаковую картину во втором и третьем случае. Так репутация великого норвежца была очищена: птицы в деле не замешаны, просто в студии Мунка на знаменитое полотно капнули воском. Знали бы, что оно будет стоить 120 миллионов долларов (именно столько в 2012 году на аукционе «Сотбис» выручили за раннюю пастельную версию «Крика»), были бы осторожнее.

Изучать искусство сегодня можно с помощью целого спектра сложных инструментов, от радиоуглеродного анализа и лазеров до гидродинамики и коротких световых импульсов, которые позволили Паскалю Котту реконструировать раннюю версию «Моны Лизы». Нельзя забывать и про возможности компьютера: инженер из Техаса Тим Дженисон с помощью 3D-моделирования полностью воссоздал полотно Вермеера «Урок музыки». Американец хотел выяснить, как художнику удавалось создавать настолько реалистические изображения. Исследователь пришел к выводу, что Вермеер пользовался сложной системой зеркал. По сути, он создал фотоснимки за полтора века до открытия фотографии.

Воссоздание «Урока музыки» Вермеера в реальных декорациях с живыми актерами

И все-таки именно рентген приносит самые интересные результаты. В последние годы он привел к рождению целой дисциплины, которую можно назвать «живописной археологией». Раз за разом мы узнаём почти детективные истории о тайном прошлом картин. Например, на голландском полотне 17-го века нашли кита, выбросившегося на берег!

А на картине, где изображен эксперимент при дворе королевы Елизаветы, рентгенограмма обнаружила черепа вокруг фигуры Джона Ди — великого британского ученого XVI века. Зловещая деталь напоминает о том, что Джон Ди также слыл магом и знатоком оккультных наук. Судя по всему, для заказчика картины это было слишком, и он попросил художника Генри Джилларда Глиндони черепа закрасить.

В России самое известное исследование подобного рода обсуждалось в прошлом году. Третьяковская галерея объявила об открытии двух цветных изображений под «Черным квадратом» Малевича.

Кроме того, ученые обнаружили фрагменты авторской надписи на картине: слово, начинающееся на н и заканчивающееся на ов. Вся фраза, по мнению сотрудников музея, звучит как «Битва негров в темной пещере». Возможно, таким образом Малевич признавал заслуги предшественника: шуточную картину из черного прямоугольника с похожим названием создал в 1893 году Альфонс Алле. Но важнее, что бескомпромиссный супрематист вдруг продемонстрировал чувство юмора — и стал для нас немного живее.

Открытия «научного искусствоведения» очеловечивают великих художников. Ван Гог по бедности использовал холсты повторно, Пикассо первым пустил в дело обычные строительные краски, а не масляные, а Мунк выставлял картины в открытом дворе, где они могли легко стать жертвой пролетающей птицы. Или, скажем, существует такая тенденция, как изучение глазных болезней живописцев. Мог ли импрессионизм родиться из того простого факта, что Моне страдал от катаракты? Мог ли Эль Греко писать вытянутые фигуры из-за астигматизма (деформированного хрусталика)? Подобными вопросами задаются, среди прочих, авторы вышедшей в 2009 году книги «Глаза художников». Согласитесь, довольно неожиданный взгляд на историю живописи, который искусствоведу не понравится, а вот для нас может сделать картину ближе.

Иногда рентген прямо-таки прицельно бьет по самолюбию критиков. Целые тома были посвящены символизму единорога на картине Рафаэля «Дама с единорогом». Но ученый из Флоренции Маурицио Серачини обнаружил, что фантастическое существо изначально было просто маленькой собачкой. Более того, питомца, скорее всего, добавили после Рафаэля. Статьи о символизме придется переписывать.

Другой пример: «Даная» Рембрандта изначально походила на жену художника Саскию. После смерти супруги живописец приблизил черты лица героини к образу своей новой пассии Гертье Диркс, чтобы побороть ее неуемную ревность. Тысячи посетителей Эрмитажа проходят мимо «Данаи» каждый день, не зная, что перед ними — сюжет не только античный, но и вполне себе бытовой.

Ранняя и поздняя Даная на картине Рембрандта

Закончу моим любимым примером исследования картины. Правда, тут рентгена и микроскопов не понадобилось — только въедливость ученого и работа в архивах.

В 2014 газета «Observer» опубликовала рассказ Эндрю Скотта Купера, сотрудника Музея современного искусства Сан-Франциско. В течение семи лет Купер изучал коллаж Роберта Раушенберга «Коллекция 1954/1955». Картина была написана в разгар «охоты на ведьм», которая затронула как коммунистов, так и геев: происходили массовые увольнения и полицейские рейды. Историка интересовало, мог ли Раушенберг через картину обмениваться тайными сообщениями со своим любовником Джаспером Джонсом, другой иконой послевоенного искусства США.

«Коллекция 1954/1955» Роберта Раушенберга

Купер знал, что самой обсуждаемой новостью второй половины 1954 года в Нью-Йорке был резонансный процесс над четырьмя еврейскими подростками нетрадиционной ориентации. Они обвинялись в серийных нападениях и убийстве. И вот под слоями краски на картине Раушенберга историк обнаружил передовицу газеты «New York Herald Tribune» за 20 августа 1954 года. Из архивов выяснилось, что в этот день на первой полосе подробно обсуждался скандал с хулиганами. Кроме того, художник выделил слово plot («заговор») из постороннего заголовка.

Фрагмент названия газеты New York Herald Tribune на картине Раушенберга

Исследование картины Раушенберга заставило Купера всерьез заинтересоваться делом подростков. Он поднял архивы штата Нью-Йорк и обнаружил множество несостыковок. Вскоре, после полноценного расследования и интервью с одним из участников событий, журналист пришел к однозначному выводу: четверо тинейджеров были обвинены несправедливо. Они действительно устраивали нападения, но большинство случаев на них просто «повесили» — хулиганы оказались жертвой политического заказа на очернение гомосексуалистов. Раушенберг догадывался об этом, когда писал картину, и зашифровал правду в своем коллаже.

Так исследование абстрактного полотна косвенно привело к установлению справедливости. А поклонникам искусства лишний раз напомнило, насколько многослойными бывают картины и насколько плотно жизнь художника переплетается с его творениями.

Понравилась статья?

Поделись с друзьями!

  Поделиться 0   Поделиться 0   Твитнуть 0

Подпишись на еженедельную рассылку

futurist.ru

Природа через рентгеновские лучи 12 фото

от Mirochka · 1 янв. 15 в 18:55 · 2 комментарияГолландский физик Арье Вант-Рит создал экстраординарную коллекцию произведений искусства, используя цветные рентгеновские лучи флоры и фауны.

Цветной рентген — лягушка среди водяных лилий.

Природа через рентгеновские лучи изображение 1

Цветной рентген — хамелеон на растении бегония.

Природа через рентгеновские лучи изображение 2

Цветной рентген — черный дрозд на ветке магнолия.

Природа через рентгеновские лучи изображение 3

Цветной рентген — курица.

Природа через рентгеновские лучи изображение 4

Цветной рентген — обезьяна на дереве.

Природа через рентгеновские лучи изображение 5

Цветной рентген — тюльпаны.

Природа через рентгеновские лучи изображение 6

Цветной рентген — игуана и пионы.

Природа через рентгеновские лучи изображение 7

Цветной рентген — тюльпаны.

Природа через рентгеновские лучи изображение 8

Цветной рентген — лысуха и цветы ириса.

Природа через рентгеновские лучи изображение 9

Цветной рентген — скат.

Природа через рентгеновские лучи изображение 10

Цветной рентген — змея обмоталась вокруг двух тюльпанов.

Природа через рентгеновские лучи изображение 11

Цветной рентген — рыба «джон дори».

Природа через рентгеновские лучи изображение 12

yourmood.ru

описание процедуры, расшифровка и рекомендации

Рентгенография является одним из способов исследования, основа ее – получение фиксированного изображения посредством рентгеновских лучей. Результат обычно получают на рентгеновской пленке или выводят (если применялись цифровые аппараты) на экран монитора или бумагу. Основывается исследование на прохождении рентгеновских лучей через ткани организма. Обычно рентген используют как диагностический метод. Для получения более точных результатов используют рентген-снимок в двух проекциях.

описания рентген снимков

Рентген грудной клетки

Рентгенография ОГК (органов грудной клетки) – самый распространенный метод обследования, который позволяет выявить патологии со стороны дыхательной, а также сердечно-сосудистой систем, ребер, грудного отдела позвоночника, возникающие при различных травмах и заболеваниях.

Как действуют рентгеновские лучи? Проходя через тело и органы, они поглощаются по-разному. В результате получается рентген-снимок. Ткани более плотной структуры выглядят на нем белыми, те, которые мягче, – темными. После проявления и высушивания врач-рентгенолог оценивает полученную картину. Рентген-снимок легких покажет все патологии, если таковые существуют, укажет на возможные заболевания.

Современные цифровые аппараты упрощают процедуру, при этом доза облучения значительно снижена. Существует и передвижное оборудование, которое позволяет обследовать лежачих больных.

Возможности рентгена и расшифровка результата

рентген снимок

Рентген грудной клетки помогает обнаружить следующие патологии в организме:

  • Дыхательная система: бронхит, пневмосклероз, плевриты, туберкулез, рак, ателектазы легких, пневмония. Рентген-снимки расшифровывает доктор и сразу видит вероятное заболевание.
  • Сердечно-сосудистая система: миокардит, перикардит, изменения сердца в размерах.
  • Средостение: смещение структур, медиастинит.
  • Костно-мышечный каркас грудной клетки: переломы грудины или ребер, позвонков, гемоторакс, пневмоторакс, ранения средостения, сердца.

Также рентгенография используется для отслеживания динамики выздоровления при лечении пневмонии. Однако рентген нельзя назвать универсальным методом диагностики. Например, природу опухоли рентген оценить не сможет, также данное исследование ограничено для неподвижных больных. Для таких исключительных случаев используется компьютерная томография.

При расшифровке результата рентген-снимка ОГК доктор оценивает, каковы размеры и форма средостения, структура грудной клетки и мягких тканей, прозрачность легочного поля, интенсивность рисунка, положение и строение корней легких, форма плевральных синусов и диафрагмальных куполов.

Подготовка и проведение процедуры

пневмония рентген снимки

Для проведения процедуры рентгенографии ОГК не требуется специальной подготовки. Доктор рекомендует только снять одежду и украшения с той области, которая будет облучаться. Также нужно убрать все предметы, которые могут помешать исследованию (очки, зубные протезы). Если есть необходимость присутствия родственника больного, на него надевается защитный свинцовый фартук.

Сняв одежду, пациент располагается напротив фотопластины. Врач выходит из комнаты к пульту, по его команде необходимо поднять плечи, прижаться к пластине и задержать ненадолго дыхание. Двигаться при этом нельзя. Если у больного нет возможности принять вертикальное положение, его размещают на столе. Помогают ему при этом родственники или медсестра.

Обследование безболезненное, не вызывает никаких неприятных ощущений. Единственный дискомфорт – прохладная температура в помещении. Рентген-снимок будет готов в течение 15 минут. Вам его выдадут сразу же вместе с описанием. На основании этого доктор поставит диагноз или направит на дообследование.

Рентген-снимки зубов

рентген снимок зубов

Рентгенологическое исследование получило широкое распространение в стоматологии. Снимок не только дает возможность отслеживать патологии, но и выявляет отклонения в строении челюстей. Рентген-диагностика важна при выборе оптимальных вариантов лечения.

Существует несколько видов рентген-снимка в стоматологии:

  • Панорамный. Данный снимок позволяет доктору оценить всю панораму расположения зубов, определить их количество, увидеть непрорезавшиеся зубы, зачатки. Также видно анатомическое строение челюсти, носовых пазух. Панорамный снимок важен при имплантации зубов, исправлении прикуса, удалении зубов мудрости.
  • Прикусный. Иначе такой снимок называют интерпроксимальной рентгенографией. Распространенный тип снимка. Применяют его для выявления пародонтита, кариеса. Иногда прикусный снимок делают после установки коронки для проверки правильности процедуры.
  • Прицельный. С помощью прицельного снимка можно точно увидеть, как выглядит больной зуб, установить правильную схему лечения. Прицельный снимок позволяет увидеть не более четырех зубов.
  • Цифровой. Безопасная современная диагностика. 3D-рентген дает возможность получить четкий снимок всего зубного ряда и отдельных зубов. Трехмерное изображение выводится на экран, после его изучения доктор определяет методы лечения.

Процедура выполнения снимка

рентген снимки зубов

Рентген-снимок зубов выполняется по рекомендации стоматолога: в случаях обнаружения кариеса, при неправильном прикусе, заболеваниях околозубных тканей, при пульпите, кисте, травмах челюсти, абсцессах.

Перед исследованием рекомендуется пациенту снять с себя все металлические изделия, украшения: они могут искажать данные снимков. Проведение процедуры зависит от вида снимка. Занимает исследование несколько минут. Облучение имеет минимальную дозу. Сеанс проходит в специальном помещении. Пациент прикусывает светочувствительную пленку, находиться она должна между аппаратом и исследуемым зубом.

При исследовании при помощи компьютерного радиовизиографа на пациента надевают специальный фартук, датчик устанавливается на исследуемую область и присоединяется к аппарату. Результат отображается на компьютере.

При использовании ортопантомографа рентгенограмма выполняется следующим образом: пациент становится к аппарату, подбородок фиксируется на опоре. Зубами зажимается блок, который не дает смыкаться челюстям. Пациент должен стоять неподвижно. Устройство несколько раз вращается вокруг головы. Снимки можно получить в этот же день.

Расшифровка снимка

На основании рентген-снимка зубов доктор пишет заключение, где указывает количество зубов, размер и их расположение. Все обнаруженные патологии также отобразятся в заключении.

На снимке видно расположение каждого зуба, наклон, состояние костей. Затемнения на снимке указывают на наличие пульпита, дентикли. Дефекты зубной эмали означают кариес. Там, где плотность снижена, заметны просветления. Если кариес сложный, структура зуба деформирована, образуются гранулемы.

Может быть обнаружена киста – четкий контур однородной структуры продолговатой формы. Киста расположена у зубного корня, она может быть маленькой и большой. Большие кисты способны затрагивать сразу два зуба. Хронический периодонтит виден как резкое затемнение на снимке у верхушки корня. При пародонтозе видна уменьшенная костномозговая область, видны атрофические процессы и склеротические изменения.

Рентген позвоночника

сделать рентген снимок

При каких случаях доктор рекомендует сделать рентген-снимок позвоночника?

  • При болях в шейном, грудном и поясничном отделе.
  • При мышечных поясничных болях неясной природы.
  • При ограничении подвижности конечностей.
  • При травмах, падениях и ушибах.
  • При подозрениях на дегенеративные изменения в костях.
  • При диагностике искривлений, остеохондрозе, сколиозе.

Рентгеновские снимки рекомендуется выполнять в двух проекциях: боковой и прямой. Описания рентген-снимков делает врач-рентгенолог, он оценивает контуры позвонков, промежутки между ними, интенсивность окраски, наличие наростов. После этого опытный специалист способен сразу же поставить диагноз, определить вероятный прогноз и необходимость хирургического лечения.

Как проводится процедура

рентген снимок легких

Для снимка верхнего отдела позвоночника не требуется специальной подготовки. Если исследуется пояснично-крестцовый отдел, рекомендуется заранее подготовиться:

  • Нужно полностью очистить кишечник, иначе диагноз будет сложно поставить правильно.
  • Исключить из рациона за два дня до процедуры продукты, способствующие брожению: хлеб, молоко, бобовые, грубую клетчатку.
  • Накануне следует исключить ужин, перед процедурой – завтрак.
  • Отказаться от алкоголя и курения.
  • Перед процедурой очистить кишечник при помощи клизмы.
  • В момент съемки на теле не должно быть металлических предметов.
  • Сохраняйте неподвижность.

Обследование для пациента абсолютно безболезненно. Проводится на протяжении 10-15 минут. Снимки с описанием сразу же выдаются на руки.

fb.ru

МУЗЕЙНАЯ ЛАБОРАТОРИЯ | ArtWiki. Энциклопедия искусства

МУЗЕЙНАЯ ЛАБОРАТОРИЯ Laboratoire de musee. Служба, проводящая научные, физические и химические анализы картин.

Музейную лабораторию не следует путать с реставрационной мастерской, с которой они находятся в более или менее тесном, в зависимости от страны и учреждения, контакте. Результаты, получаемые научными методами, вносят важный вклад в познание художественного произведения; они дают возможность точного анализа материальной стороны картины, столь необходимого как для хранения произведения искусства, так, для истории живописных техник. Научная фотография, рентгенография и микрохимический анализ (называем только часто используемые методы) словно открывают тайную жизнь картины и этапы ее создания, делая видимыми первый набросок, прописки и последующие изменения; они дают необходимые сведения реставраторам, знатокам, историкам и критикам искусства.

История

Во Франции интерес ученых к сохранению и изучению живописи возник во второй половине XVIII в. в среде энциклопедистов. Физик Александр Шарль (1746-1822), чья лаборатория в 1780 разместилась в Лувре, был. вероятно, одним из первых ученых, пытавшихся изучить сохранность и технику картины с помощью оптических приборов. В XIX в. Шапталь, Жоффруа Сен-Илэр, Вокелен, Шеврель и Луи Пастер, в свою очередь, посвятили свои исследования анализу составных частей живописных работ.

В Англии ученый сэр Хамфри Дэви (1778- 1Я29) также пытался сделать анализ картин и составляющих их веществ. Во второй половине XIX в. этими проблемами заинтересовались и немецкие ученые. Первая научно-исследовательская лаборатория была создана в 1888 в Берлинском музее. Семью годами позже физик Рентген пытался сделать первую рентгенограмму картины. В начале XX в. был усовершенствован химический метод, а во Франции с 1919 возобновились научные работы в Лувре. Однако только после первой международной конференции, которая состоялась в 1930 в Риме, мир стал свидетелем подлинного начала научных работ. Среди служб, существовавших к тому времени, нужно упомянуть лабораторию Британского музея (создана в 1919), Лувра и Каирского музея (1925), Художественного музея Фогг в Кембридже (1927) и Музея изящных искусств в Бостоне (1930).

Несколько позже были созданы лаборатории при национальных или муниципальных музеях: Центральная лаборатория музеев Бельгии (1934), Институт Макса Дорнера в Мюнхене (1934), лаборатория лондонской Нац. гал. и Института Курто (1935), Центральный институт реставрации в Риме (1941). С 1946 подобные службы существуют в большинстве крупных музеев мира в Польше, России, Японии, Канаде, Индии, Швеции, Норвегии; другие лаборатории еще только создаются.

Научные методы

Оптическое исследование, расширяя возможности зрения, позволяет воспринимать то, что до этого было малозаметным или вовсе невидимым. Тем не менее изучение картины при естественном свете является необходимым предварительным этапом лабораторного исследования, впрочем, как и фотографическая регистрация. К традиционным методам фотографии недавно прибавились собственные технологии научного изучения картин. Свет, падающий по касательной. Помещенную в темную комнату картину освещают пучком света, параллельного ее поверхности или образующего с ней очень маленький угол. Изменяя положение источника света, можно выделять различные стороны поверхности картины. Визуальный осмотр и фотографическая регистрация картины под этим углом указывают, прежде всего, на сохранность произведения, а также позволяют определить технику художника.

Следует, однако, отметить, что такой взгляд на картину искажает действительность, и поэтому осмысление полученных сведений должно сопровождаться анализом оригинала.

Монохроматический натриевый свет. В этом случае картина освещается лампами в 1000 W, излучающими только желтый свет, расположенный в узкой полосе спектра. Благодаря этому получается монохроматический вид исследуемого произведения, при котором снижается цветовое воздействие на сетчатку глаза и который позволяет добиться точного прочтения линий. Монохроматический свет снимает эффект тональных лаков и позволяет прочесть невидимые без того надписи и подписи. Можно увидеть и подготовительный рисунок, при условии, что он не скрыт слишком толстым слоем лессировок. Полученные результаты менее богаты данными, чем те, которые предоставляет инфракрасное излучение, но достоинство этого метода заключается в том, что он может быть применен при визуальном анализе картины.

Инфракрасное излучение. Благодаря открытию инфракрасного излучения стало возможно сфотографировать то, что казалось невидимым, но результаты этого анализа человеческий глаз может воспринимать только с помощью фотографической пластины. Инфракрасные лучи позволяют обнаружить ранее незаметное состояние произведения искусства, поглощая или отражая цветовую материю, составляющую картину. Фотоснимок открывает нам невидимую глазу надпись, рисунок, неоконченный этап работы. Однако результаты непредсказуемы, и расшифровка полученного на фотографии изображения оказывается часто очень сложной и трудной. Тем не менее становится возможным прочтение надписей, расположенных порой на оборотной стороне картины. Кроме того, инфракрасное излучение облегчает и определение характера пигмента, дополняя результаты наблюдений, сделанных под микроскопом или физико-химическим методом.

Ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей многие вещества, входящие в состав картины, излучают только им присущее свечение; результаты этого анализа можно сфотографировать. Явление флуоресценции является не только следствием химического состава красителей, но зависит также от их возраста, что может привести к разнице коллоидального состояния. Использование ультрафиолетовых лучей представляет большой интерес не столько для собственно истории искусства, сколько для определения сохранности картин. Старые лаковые покрытия в ультрафиолетовом излучении представляют собой поверхность молочного цвета, на которой позднейшие прописки выступают в виде более темных пятен. Расшифровка полученных данных нелегка и чаще всего требует дополнительного микроскопического анализа поверхности, который подтвердит или опровергнет гипотезу о переписанном месте, об удалении лака или о следах этих повреждений, которые часто очень трудно определить по фотографии. Тем не менее этот метод необходим для реставратора и позволяет ему оценить объем предыдущих реставраций.

Макро- и микрофотография. Это фотографические приемы, часто используемые во время исследования картин. Макрофотография увеличивает видимое изображение (масштаб увеличения очень редко превышает 10-кратный) с помощью объектива с коротким фокусным расстоянием. Она может осуществляться при естественном свете, а также при различных освещениях (монохроматическом, ультрафиолетовом, по касательной). Она позволяет выделить некоторые части картины из их контекста и привлечь к этим деталям внимание. Микрофотография - это изображение фрагмента картины, полученное с помощью микроскопа. Она фиксирует незаметные для глаза изменения в состоянии маленького, иногда не превышающего нескольких десятков квадратных миллиметров участка картинной плоскости. Она позволяет также наблюдать за состоянием лаковых слоев, отличительными особенностями кракелюр и пигментов.

Микросрезы. Этот метод аналогичен тому, который используется в медицине для гистологических срезов. Здесь используется полиэстровая смола, которой покрывают исследуемый образец. После добавления небольшого количества катализатора и акселератора мономер полимеризуется при нормальной температуре. В результате получается твердая и прозрачная массу, похожая на стекло. Эта масса разрезается таким образом, чтобы получить срез в плоскости, перпендикулярной плоскости красочных слоев; плоское сечение затем полируется, в качестве шлифовального материала используется окись алюминия в виде водной суспензии. Изготовление поперечных срезов упоминалось в различных работах в течение последних шестидесяти лет.

Электронный микрозонд. Его применение решает сразу несколько проблем. Этот метод, который удовлетворяет критерию размеров (микрометр) и позволяет сделать точный анализ, может быть применен, в частности, при изучении срезов картины полированная поверхность или шлиф электронный пучок света может обследовать различные по составу слои, толщина которых составляет несколько микрометров, а элементы механически неразделимы. Внутри каждого слоя микрозонд позволяет определить элементы, входящие в состав каждого материала, причем разрешающая способность этого метода намного превосходит способность лучших оптических прибороы.

Рентгенография. Рентгеновские лучи были впервые обнаружены в 1895 физиком Рентгеном, который спустя несколько лет в Мюнхене сделал и первую рентгенограмму картины. Во Франции подобные опыты были проведены только во время Первой мировой войны, в 1915, доктором Леду-Лебаром и его помощником Гулина. Работы были продолжены в Лувре в 1919 доктором Шероном. Систематические исследования начаты в музеях лишь несколькими годами позже: в Лувре - в 1924 (Селерье и Гулина), чуть позже в Художественном музее Фогг (Бурроуз), в Англии (Кристиан Уолтерс) и Португалии (Сантош). После второй мировой войны рентгенография стала наиболее часто используемым методом анализа.

В лабораториях используются слабые рентгеновские лучи. Генераторы - чаше всего антикатодные вольфрамовые лампы, похожие на применяемые в медицине. Существуют также приборы для очень слабого излучения лампами с бериллиумным окном и водным охлаждением. Рентгеновские пленки помещаются в конверт из черной бумаги и могут без риска соприкасаться с картиной. Четкость полученного изображения частично зависит от степени соприкосновения пленки с поверхностью картины. Рентгеновские снимки воссоздают невидимый облик картины. Однако если основа картины толстая, а грунт большой плотности, то внутренняя структура картины может оказаться малоразборчивой, но если через холст и грунт излучение проходит легко, то краски, используемые для подготовительного рисунка обычно на основе, легко выявляются и таким образом возрождается невидимое глазом состояние картины, этап творчества, прежде недоступный для восприятия. На рентгеновском снимке не всегда проявляется первая стадия работы. Так, например, на снимке картины Э. Лесюера «Музы» выявлено сложное сочетание первого и второго этапов работы лицо видно одновременно в профиль и в фас. Если же, напротив, картина была написана красками слабой интенсивности, а затем покрыта широкими лессировками, мы вовсе не увидим этого первого этапа. Картина подвергается рентгеновскому анализу для того, чтобы сделать вывод о состоянии картины в преддверии реставрации или в целях, интересующих историков искусства. Но самых точных результатов от рентгенографии можно ожидать в определении состава и состояния основы.

Основа. Основой называется деревянная или медная доска или холст, на которые наносится красочный слой. Когда нужно исследовать картину, написанную на меди, что, впрочем, бывает редко, рентгенография не может помочь, так как слабые рентгеновские лучи, используемые при анализе, не в состоянии пройти через металл. Вместе с тем если использовать лучи большей проникающей силы, они не дадут никакой информации о самом красочном слое. В этом случае некоторую ясность может внести только исследование картины в инфракрасных и ультрафиолетовых лучах. Когда же речь идет о картине, написанной на дереве (а таких картин до XVII в. было большинство), исключительно полезным может оказаться изучение свойств и структуры деревянной основы, визуальный осмотр которой часто затруднен. Деревянная основа скрыта с одной стороны красочным слоем, а другую ее сторону сам художник иногда покрывает грунтом, чтобы избежать влажности. Этот грунт бывает обычно одноцветным или отделанным под мрамор. Когда красочные слои и грунт проницаемы рентгеновскими лучами, можно получить рентгенограмму деревянной основы.

Часто первоначальная основа исследуемой картины имеет повреждения (древесные паразиты, расшатанность досок) и нуждается в укреплении, поддержке («паркетаж»), образованной вертикальными и горизонтальными перекладинами, наложенными на основу. Таким образом, исследовать первоначальную основу достаточно трудно, так как она видна только на несколько миллиметров с краю. С помощью рентгеновских лучей можно установить саму структуру первоначальной деревянной основы и породу дерева, которая варьируется в зависимости от географического происхождения картины; на основе этих сведений можно получить точные сведения о работе. Когда картина написана на толстой деревянной основе из мягкой древесины, основа часто бывает поражена древесными паразитами, которые проделывают в ней целые ходы; их можно выявить на рентгеновском снимке. Необходимо знать истинное состояние основы.

Рентгенография позволяет проследить результат действий, совершаемых с картиной, и обнаружить технические средства и приемы, используемые художниками-примитивами. Так, на рентгеновском снимке можно видеть куски грубого холста, включенные в грунт для того, чтобы сочленения досок не проявились на самом красочном слое. Волокно-сырец, смешанное с известковым раствором, используется во многих картинах XIV в. В XVII и XVIII вв. картины, как правило, были написаны на холсте, который затем дублировали, то есть дополнительно укрепляли другим холстом; этот холст (обычно конца XVIII или XIX в.) не позволяет увидеть первоначальную основу. Дублированный холст, при условии, что при грунтовке он не был пропитан белилами, не представляет для рентгеновских лучей особой проблемы.

Характеристики холста зависят от страны и эпохи, где и когда произведение было создано. Так, венецианские полотна чаще всего имеют тканый узор; Рембрандт использовал простые холсты. Благодаря рентгеновским снимкам можно определить все особенности тканей. Рентгеновские лучи обнаруживают не только тип холста, но и вставки в них. Рентгеновский снимок позволяет оценить степень изменений (надставленные или обрезанные картины).

Красочный слой. Рентгенографическое исследование красочного слоя картины позволяет решить некоторые проблемы ее сохранности. Пононленные места часто занимают гораздо большую площадь, чем те, которые нуждаются в реставрации. Так, чтобы скрыть утрату площадью в несколько квадратных миллиметров, часто делают записи в несколько квадратных сантиметров. Сравнивая снимок, полученный с помощью ультрафиолетовых лучей и показывающий записи, и рентгеновский снимок, на котором проявляется сама утрата, можно определить, точно ли поновленный участок покрывает утрату. Необходимо отметить, что на рентгеновском снимке утраты красочного слоя выглядят черными или белыми. Если они покрыты тонким слоем краски, то окажутся затемненными, а четко восприниматься будет структура холста или деревянная основа картины.

Напротив, когда утраты заделаны мастикой, то они не пропустят лучи и образуют белую зону. Утраты выявляются также и по внешнему виду участков, где холст проступает явственнее, чем в остальной части картины. Помимо этого, рентгенография позволяет изучить основные элементы картины с точки зрения истории искусства и технических приемов. Чтобы живопись была видна, нужно подвергнуть грунт, который находится между основой и красочным слоем, воздействию рентгеновских лучей. В большинстве случаев деревянные или холщовые основы картин проницаемы, за исключением тех, которые укреплены с оборотной стороны. Белила, которые часто входят в палитру художников, сделаны на основе солей тяжелых металлов; свинцовые белила создают преграду для рентгеновских лучей. Черные краски, напротив, обладают очень небольшой плотностью. Между этими двумя крайностями располагаются краски, степень интенсивности которых различна, вот почему изображение на рентгеновском снимке тонко нюансировано.

Когда подготовительный рисунок исполнен в технике гризайля, состоящей в основном из белил, иногда подкрашенных, можно получить очень интересные рентгеновские снимки рентгенография позволяет узнать первоначальный замысел художника и его манеру, мы можем проследить за развитием его техники. Если подготовительный рисунок написан красками малой плотности, он почти незаметен; видна только общая композиция картины.

Когда картина написана лессировками, изображение, хотя и видимое, не является контрастным; так обстоит дело с некоторыми картинами Леонардо да Винчи. Многие мастера использовали технику, которая находится между этими крайностями. Когда художник переделал картину, переписал некоторые ее части, чтобы придать им законченную форму, отличную от первоначальной (ее обнаружили рентгеновские лучи), то говорят о прописках (см.). Прописки бывают самые разные. Некоторые почти повторяют и уточняют первоначальные линии, и это наиболее частый случай.

В XIII-XVI вв. художники обычно исполняли свои полотна лишь после того, как исключительно точно проработают подготовительный рисунок, поэтому и расхождений между подготовительным рисунком и завершенной картиной обнаруживается очень мало. Вместе с тем эти художники работали красками с достаточно незначительной плотностью - рентгеновские снимки чаще всего едва контрастны. Рентгеновские лучи призваны оказать большую помощь в изучении стиля и манеры художника. Если рентгеновские снимки картин одного и того же художника выявляют постоянство мастера в выборе пигментов и кистей и в форме мазка, то можно исправить ошибочные атрибуции, уточнить хронологию и обнаружить подделки. Под подделками подразумеваются только те картины, которые исполнены для того, чтобы ввести в заблуждение. Подделки не надо смешивать с копиями или старыми репликами, которые следует лишь правильно атрибуировать. Но поддельные элементы, которые присутствуют в самой оригинальной картине (поддельные кракелюры, подписи), можно обнаружить с помощью рентгенографии, ибо копиист и фальсификатор стремится воспроизвести только поверхность произведений, которым он подражает.

Микрохимический и физико-химический анализ. К упомянутым методам, часто используемым в музейных лабораториях (так как они имеют то преимущество, что не разрушают картину), следует добавить микрохимические методы, которые позволяют установить составные элементы картины, исходя из микропробы. Известно, что краска состоит главным образом из пигмента, растворенного в связующем веществе или растворителе. Микрохимический анализ пигментов, минеральных или органических, относится к компетенции традиционной микрохимии, если речь идет о минеральных веществах. Кроме того, он использует инфракрасную спектрографию и хроматографию для некоторых органических пигментов.

Анализ связующего вещества производится аналогичным образом. Инфракрасная спектрография применяется также для анализа натуральных смол, а хроматография для выделения водных растворителей (камедь, клей, казеин). Хроматография в газообразном состоянии служит для отделения составляющих различных жирных кислот (масло, яйцо). Среди методов, применяющихся в музейных лабораториях, следует назвать дифракцию и рентгеновскую флуоресценцию, которые, по сравнению с приведенными выше методами, позволяют получить более точные данные относительно природы и структуры различных минеральных составляющих станковой и стенной живописи. Рентгеновская флуоресценция основана на анализе спектра излучения в зоне рентгеновских лучей. Источниками могут быть поток электронов, радиоактивный источник, пучок рентгеновских лучей. Спектрометрия рентгеновских лучей используется как в физическом, так и в химическом аспектах. Но приборы, применяемые и сегодня, не предназначены для непосредственного анализа громоздких или очень маленьких предметов. Кроме того, большая их часть обладает низкой чувствительностью к таким элементам, как медь, цинк, никель и железо, из-за «шумового фона», производимого самим оборудованием.

Рентгеновская микрофлуоресценция, разработанная в Лаборатории научных исследований музеев Франции, была создана с учетом всей специфики музееведения. Ее параметры располагаются между параметрами электронного микрозонда и обычного спектрометра рентгеновской флуоресценции. Ее преимуществами является то, что она позволяет производить исследования прямо на картине, не разрушая ее, что проба может быть повторно использована для другого анализа и что она не требует предварительной обработки пробы; она чрезвычайно надежна, очень чувствительна, и относительно проста. Все эти методы требуют специального оборудования и персонала.

В мире существует только несколько музеев и национальных служб, способных производить такого рода исследования; хотя, конечно, пройдут годы, и традиционные критерии анализа картин изменятся под влиянием научных достижений, что должно привести к более глубокому знанию живописи.

Применение методов. Сохранность и реставрация

Анализ материалов, из которых состоят картины, знание законов, которые определяют взаимодействие этих материалов между собой, с одной стороны, и с окружающей средой, с другой стороны, способствуют наилучшей сохранности картин; научные методы позволяют измерить и проанализировать влияние внешних факторов - света и климата на их сохранность. Степень освещения очень влияет на свойства картины. Музейная лаборатория располагает измерительными приборами, позволяющими выбрать то освещение, которое наилучшим образом отвечает требованиям сохранности картин. Некоторые государственные (AFNOR) или международные (1СОМ) организации распространяют ведущиеся учеными разработки в этой области.

Но больше всего музейные хранители настаивают на благоприятном для картин климате и влажности. Проведенные в настоящее время исследования доказали ключевую роль влажности. Резкие перепады температуры влекут за собой изменение влажности и считаются губительными. Центральное отопление, высушивающее влагу, также является негативным для живописи фактором. Изучение загрязнения атмосферы и его влияния на сохранность картин также является объектом исследований во Франции и других странах. Но музейные лаборатории должны заниматься научным исследованием самих картин. Перечисленными выше методами можно обнаружить повреждения основы, вздутие красочного слоя, взаимодействие пигментов и связующих веществ. После лабораторного исследования, позволяющего точно определить размер повреждений, может быть проведена реставрация.

Экспертиза

Эксперт, подобно врачу, дополняет визуальный осмотр картины сведениями, полученными научным исследованием. Благодаря микроскопам можно распознать поддельные кракелюры, отличить старые пигменты от современных. Рентгеновские и инфракрасные лучи выявляют невидимое глазом состояние художественного произведения, которое копиист или фальсификатор не могли ни постигнуть, ни воспроизвести.

Датировка

Датировка элементов, составляющих живописный материал, производится в нескольких лабораториях в Соединенных Штатах, Франции и Германии. Для этого существуют четыре метода, которые находятся еще на стадии экспериментального исследования. Работы, предпринятые недавно Институтом Меллона в США, позволяют датировать картины с помощью углерода 14, выявляющего нестарые подделки (менее ста лет). Действительно, с начала XX в. процентное содержание углерода 14 в биосфере изменилось, и его концентрация с 1900 до наших дней удвоилась. Различие между современным маслом и древним также может быть установлено на относительно маленьких пробных образцах (30 мг) при помощи миниатюрных счетчиков. Свинцовые белила являются одним из наиболее часто используемых пигментов. Измерение изотопного коэффициента свинца, содержащегося в пигменте, может быть очень точным и позволяет ответить на вопрос, где и когда была исполнена картина.

Два других метода датировки еще относятся к области эксперимента; они основаны на активации нейтронами посторонних примесей, содержащихся в свинцовых белилах, и на естественной радиоактивности свинца. Но особенно важны научные методы для более глубокого знания самой живописи. Физические и оптические техники выявляют этапы творческого процесса и воссоздают характерные черты техники художника: растирание красок, анализ грунта, ширина кисти, расположение света - все это очень существенно для историка искусства. Наука призвана усовершенствовать традиционные методы исторического изучения и хранения произведений искусства.

150

artwiki.ru

ЭЛТЕХ-Мед: Рентген живописи

Большие возможности для изучения произведений живописи открывает использование рентгеновского излучения.

При рентгенографировании получается изображение объекта в натуральную величину. По рентгенографической плотности изображения можно судить о составе левкаса или грунта. Рентген в живописи позволяет выявить структуру и особенности живописного произведения, характер красочного слоя, что дает возможность проследить особенности техники живописи данного произведения. Изучая технику живописи определенного художника, на основании рентгенограммы можно установить особенности его мазка, моделировку форм, определить участки исправлений и переписок.

Рентген в живописи почти всегда дает возможность определить точные границы утрат красочного слоя, даже если они закрыты большими реставрационными записями.

Только на рентгенограмме возможно получить точное изображение нижележащего красочного слоя, с большой достоверностью выяснить историю жизни произведения.

Существует несколько методов рентгенографических исследований.

Основной метод рентгенографического исследования заключается в том, что приемник изображения кладется на красочную поверхность произведения живописи, плотно прижимается к ней, а пучок рентгеновского излучения направляется перпендикулярно к плоскости приемника в его центр.

Первый и обязательный этап исследования — получение основной рентгенограммы. В большинстве случаев основная рентгенограмма дает достаточно данных для исследования произведений живописи.

В ряде случаев основной метод не дает необходимых данных из-за специфических особенностей строения исследуемого объекта.

Условно эти особенности можно разделить на следующие группы:

  • 1. Неоднородность строения основы: подрамник с крестовиной, паркетаж, накладные шпонки, наличие трещин и сучков в досках. Очень часто они дают на рентгенограмме плотные тени, мешающие исследованию отдельных участков красочного слоя.
  • 2. Наличие красочных слоев с обеих сторон основы. На основной рентгенограмме их изображения накладываются друг на друга, что затрудняет исследование каждого красочного слоя.
  • 3. Очень небольшая величина детали исследуемого объекта.

В таких случаях наряду с получением основной рентгенограммы применяются дополнительные методы исследования:

  • 1) компенсатография,
  • 2) угловая рентгенография,
  • 3) угловая рентгенография, совмещенная с круговым вращением объекта исследования (послойная контактная рентгенография).

Однако наиболее информативным методом в этом случае в настоящее время является микрофокусная (проекционная) рентгенография.

eltech-med.com


Смотрите также

Evg-Crystal | Все права защищены © 2018 | Карта сайта