Механистическая картина мира (стр. 1 из 2). Механистическая картина мира


Механистическая картина мира Ньютона

Ещё в древности, во времена Платона, совершались неоднократные попытки осмысления и понимания процессов, происходящих вне человека и в нем самом. Из-за недостаточного знания и понимания многое причислялось к сверхъестественным проявлениям. Со временем накопленные знания привели к более полному пониманию существующих процессов и взаимосвязей в природе.

История становления механистической картины мира

Путь формирования знаний был тернист. Большую роль играло всеобщее понимание законов бытия и готовность человечества того времени принять или отвергнуть определённый взгляд на мир.механистическая картина мира Немаловажную роль сыграла в средние века религия, пресекая любые попытки научного подхода к познанию окружающего мира. Всяческие действия, противоречившие догмам церкви, предавались анафеме и искоренялись. Огромное количество великих умов было сожжено на кострах Римской инквизиции. И только лишь в 17-18 веке, под давлением реальных доказательств, достаточно серьёзно начала популяризироваться механистическая картина мира. В этот период были проведены первые серьёзные попытки систематизации и обработки накопленных исследований и трудов прошлых эпох человечества. Благодаря новому пониманию организации мира стало возможным повсеместное использование и внедрение в производстве и быту полученных знаний на практическом уровне.

Общество и понимание природы

Формирование механистической картины мира способствовало быстрому технологическому развитию общества. Однако для её внедрения потребовалось продолжительное время.создание механистической картины мира В первую очередь это было связано с психологической готовностью общества принять новый способ понимания основ мироздания. Создание механистической картины мира и её полное формирование длилось порядка двухсот лет, до середины девятнадцатого века.

Под влиянием философов, мыслителей и естествоиспытателей предыдущих эпох, таких как Демокрит, Аристотель, Лукреций и Эпикур, постепенно пришло понимание и принятие материалистического подхода.

Накопленные знания в области математики, физики, химии показывали отличия и особенности механистической картины мира от существующего понимания законов Вселенной на тот период.

Труды Аристотеля и Птолемея в то время не являлись точными. Однако это были первые попытки осмысления и понимания того, что представляет собой механистическая картина мира.

Начало эпохи механистической картины мира

Несколько позже, в 16 веке, очередной всплеск научной мысли и резонанс в обществе вызвали труды «О Вращении небесных сфер» Николая Коперника. Его последователи видели рациональность и актуальность в научном подходе исследования окружающего мира. Впоследствии на основании трудов Коперника и Галилея родилась новая эпоха мировоззрения.

На процесс создания механистической картины мира и её становления оказал огромное влияние французский учёный Рене Декарт. Область его познаний была достаточно широка, он работал в сфере физики, математики, философии и биологии. Религиозное образование молодого Рене не стало помехой в освоении знаний, и он смог стать одним из создателей нового понимания устройства мира.механистическая картина мира пространство время

Около семи лет философ и учёный провёл в странствиях по Европе семнадцатого века, накапливая жизненные впечатления и размышляя над философскими и математическими проблемами той эпохи.

Значительных успехов Декарт добился в области математики. Его достижения отражены в известном труде «Геометрия», опубликованном в 1637 году. Именно этот научный труд заложил все основы современной геометрии. Рене также принадлежит введение символики в алгебру. Его труды оказали ключевое влияние на развитие математики в дальнейшем. В 1644 году французский учёный и философ дал своё определение зарождению и дальнейшему развитию мира и окружающей природы.

По его мнению, Солнечная система и планеты сформировались из материальных вихрей, вращающихся вокруг Солнца. Он считал, что для отделения тела от среды необходимо наличие различных скоростей движения. А граница тела становится реальной, если тело движется, и это определяет его форму и размеры. Все формулы и определения он сводил к механическому перемещению тел. Странное определение, если учитывать доступные нам сейчас знания, не так ли? Но таковым был взгляд некоторых учёных того времени.

Мнение Ньютона о процессах в природе и Вселенной

Несколько иного мнения придерживался создатель механистической картины мира – Исаак Ньютон. Он был математиком, физиком, философом и астрономом. Все свои заключения сей ученый муж делал на основе проведённых экспериментов, тщательно их изучая. Основным кредо его была фраза «Гипотез не измышляю!» Важным научным достижением Ньютона стало создание теории движения планет и небесных сфер.формирование механистической картины мира Связанное с этой работой открытие всемирного тяготения легло в основу полноценного обоснования гелиоцентрической системы. Механистическая картина мира Ньютона оказалась более точной и результативной.

В 1688 году в Англии произошла Славная революция. Страна в этот период переживала мощные политические брожения от монархии до полного аналога коммунизма. Однако, несмотря на перипетии жизни, великий учёный и философ продолжал работать над философскими трудами об устройстве мира.

Философия и наука прошлого

Механистическая картина мира Ньютона прошла тернистый и сложный путь. В процессе написания последней части своего труда он заявил: «Третью часть я намерен теперь устранить, философия - это такая же наглая дама, иметь дело с которой равносильно вовлечению в судебную тяжбу». В конце концов в свет вышли его «Математические начала натуральной философии» (в 1687 году). Эта система получила всеобщее одобрение и стала прочной общепризнанной теорией.

В работе Ньютона даётся обоснование трудов Коперника о движении планет вокруг Солнца. Финальным трудом учёного стали три закона, завершающие работы Декарта, Галилея и Гюйгенса и других великих умов того времени, определив тем самым дальнейшее создание механистической картины мира и понимания процессов в природе.

В целом представления об окружающем мире в семнадцатом веке являли собой картину однажды созданного и неизменного мира Вселенной.механистическая картина мира ньютона Ньютон считал пространство вместилищем всех объектов, а время - длительностью процессов в нем. Пространство считалось бесконечным и неизменным во времени.

Много экспериментов учёный провёл над физическими процессами между телами. В ходе работ он вывел три закона, которыми мы пользуемся и сейчас.Первый гласит, что именно сила выступает в качестве причины ускорения тела. Все процессы в мире склонны к ускорению объектов и являются причиной взаимодействия тел.особенности механистической картины мира

Второй закон определяет, что действие силы на предмет в определённый момент и в данной точке меняет его скорость, которую можно вычислить.

Третий закон гласит, что действие тел друг на друга равнозначно по силе и противоположно по направлению.

Именно таковой была ньютоновская механистическая картина мира. Пространство, время не связывались между собой, существовали как обособленные явления. Однако определения И. Ньютона послужили толчком к смене мировоззрения и полному переходу к полноценной картине взаимосвязи пространство – время.

Верно ли понимание природы пространства и времени?

Спустя двести лет, в начале двадцатого столетия, Альберт Эйнштейн отметил, что ньютоновская механистическая картина мира о материи и пространстве может трактоваться лишь в пределах обычного, привычного нам мира.механистическая картина мира о материи

В космических масштабах представленные законы не работают и требуют переосмысления. Впоследствии учёный разработал теорию относительности, которая объединила пространство и время в единую систему.

Впрочем, это не единственная область, где законы Ньютона не имеют своего применения. С наступлением эры изучения элементарных частиц и особенностей их поведения стало понятно, что в этой сфере действуют совершенно иные правила. Они предельно своеобразны, порой непредсказуемы и могут нарушать наше привычное понимание времени и пространства.

Бытующее в научных кругах выражение о том, что квантовую физику невозможно понять, в нее можно только верить, замечательно объясняют несоответствие представлений о мире со всеми происходящими в нем процессами на субатомном уровне.

Причина и следствие

В процессе становления материалистического понимания окружающей природы ньютоновская механистическая картина мира определила дальнейший ход истории развития человечества. Технологии и развитие цивилизации тесно связаны с предыдущим накопленным опытом и обязаны прошлому своим сильным настоящим и сформированной картиной восприятия мира.

fb.ru

Механистическая картина мира

Министерство среднего образования Украины

УВК №66

Реферат по естествознанию

«Механистическая картина мира»

Выполнила: ученица 11«Г» класса

Мазина Мария

Приняла: Мельниченко Л.И .

Днепропетровск

2000

Оглавление

Возникновение научных знаний.................................................... 2

Научная рациональность............................................................... 2

Механистическая картина мира..................................................... 3

Приспособление организмов к окружающей среде...................... 4

Катастрофическая концепция......................................................... 5

Заключение..................................................................................... 6

Литература...................................................................................... 7

Возникновение научных знаний

Обусловленная современным развитием методологической рефлексии проблема рациональности стала предметом пристального внимания многих философов. Одной из причин актуализации данной проблемы является усложнение процесса и структуры познания и возрастание роли логического начала в научном поиске. В этой связи определенный интерес представляет анализ становления естествознания как науки в Новое время под углом зрения рационализации познавательной деятельности ученых.

Каждая эпоха предъявляет к знаниям и формам познания свои требования научности, которые выступают по отношению к знанию двояко: как социокультурные (внешние) и логико-гносеологические (внутренние) требования. В ХVII-XIX веках - эта эпоха становления науки в буквальном смысле этого слова. Проблема возникновения науки - проблема дискуссионная. По крайней мере, можно выделить две точки зрения по данному вопросу: одни считают, что наука возникла с возникновением самой философии, если еще не раньше, т.е. формирование пифагорейской школы в V - IV вв. до н.э. - это начало возникновения подлинных научных знаний. Именно ту точку зрения можно найти в учебно-методической литературе. Альтернативная точка зрения предполагает рассматривать науку как явление более позднего периода развития цивилизации.

Многие цивилизации, вплоть до Нового времени, обходились без научных знаний и не нуждались в них. Невостребованность элементов зарождающегося научного знания в античный период есть результат неразвитости материального производства, но удовлетворенности производством и применением вненаучного знания. В этой связи пишет В.Ж. Келле, "что бы возникла наука, общество должно достичь не только определенного уровня социально - экономического развития, порождающего потребность в научных знаниях, но и сформировать культуру определенного качества, культуру, в недрах которой возможно зарождение и развитие научного мышления". Если исходить из этого, то поворотным моментом в истории генезиса науки можно считать начало появления зачатков капиталистических производственных отношений.

С возникновением последних, по словам К. Маркса, "впервые возникают такие практические проблемы, которые могут быть решены лишь научным путем".

Резюмируя оба подхода по рассматриваемой проблеме можно сказать, что, безусловно, зачатки научных знаний начали возникать в высоко развитых в культурном отношении странах: Вавилонии, Греции, Китае, Индии. В рамках каждой исторической эпохи, с учетом уровня культурного развития, вырабатываются конкретно - исторические формы познания мира, общества. Однако до возникновения капиталистического способа производства наличные элементы знания не оказывали какого-нибудь заметного влияния на развитие общества и не представляли собой сложившиеся теоретизированные системы, пригодные для объективного исследования окружающего мира. Поэтому правомерно связывать начало возникновения подлинной науки с коперниканской революцией в естествознании и деятельностью Галилея и Ньютона. На передний план выходит механика как наука о небесных и земных телах. Что касается физики, химии, биологии, геологии и др., то они только начинали делать первые самостоятельные шаги. Рассматриваемый период мы связываем и со становлением самой научной рациональности.

Научная рациональность

В современной философско-методологической литературе представлен широкий спектр точек зрений и подходов к пониманию научной рациональности. В отдельности они раскрывают определенные аспекты того явления в науке, а в совокупности - позволяют строить целостную концепцию довольно сложного структурного образования. Рациональность в науке есть продукт реализации разумом своего организующего, нормирующего и упорядочивающего начала человеческой деятельности. Разум стремится схематизировать, в частности в науке, интеллектуальные операции, путем подчинения их мировоззренческим установкам, методологическим принципам и когнитивным требованиям.

'Рациональность, - пишет И. Лакатос, - есть то, что соответствует определенным методологическим принципам, нормам и предписаниям'. Эти манипуляции над действиями исследователя позволяют достичь определенную стройность и логическую последовательность в познавательной деятельности, согласуемой с представлениями конкретно - исторической эпохи о ценностях науки и культуры; привести в соответствие продукта поиска с объектной реальностью; подвести научные знания под социальные потребности. Именно эти особенности, присущие научно-исследовательской деятельности, делают возможным вписание научных знаний в культурные пласты человечества, которые характеризуют уровень совершенства логического мышления человека.

Механистическая картина мира

К совершенству стремились в XVII-XIX веках именно частные науки, которые только-только начинали обретать статус самостоятельности и науки. Это был период прорыва их к новым горизонтам истин. Классическая механика выработала иные представления о мире, материи, пространстве и времени, движении и развитии, отмеченные от прежних и создала новые категории мышления - вещь, свойство, отношение, элемент, часть, целое, причина, следствие, система - сквозь призму которых сама стала смотреть на мир, описывать и объяснять его. Новые представления об устройстве мира привели к созданию и Новой Картины мира - механистической, в основе которой лежали представления о вселенной как замкнутой системе, уподобляемой механическим часам, которые состоят из незаменимых, подчиненных друг другу элементов, ход которых строго подчиняется законам классической механики. Законам механики подчиняются все и вся, входящие в состав вселенной, а, следовательно, законам этим приписываются универсальность. Как и в механических часах, в которых ход одного элемента строго подчинен ходу другого, так и во вселенной, согласно механистической картине мира, все процессы и явления строго причинно связаны между собой нет места случайности и все предопределено.

В механистической картине мира задаются мировоззренческие ориентации и методологические принципы познания. Механицизм, детерминизм, редукционизм образуют систему принципов, регулирующих исследовательскую деятельность человека. Открывая законы, описывающие природные явления и процессы, человек противопоставляет себя природе, возвышает себя до уровня хозяина природы. Так человек ставит свою деятельность на научную основу, ибо он, исходя из механистической картины мира, уверился в возможность с помощью научного мышления выявить универсальные законы функционирования мира. Эта деятельность оформляется в рационалистическую. Безусловно, предполагается, что такая деятельность целиком должна основываться на целевых установках, принципах, нормах, методах познания объекта. Поступки (научные) и действия исследователя, основанные на предписаниях методического характера обретают черты устойчивого образа деятельности. В рассматриваемый период исследовательская деятельность в астрономии, механике, физике была достаточно рационализирована, а сами эти науки занимали лидирующее место в естествознании.

Физика как наиболее разработанная область естествоиспытания, задавала фон для развития других отраслей науки. Последние же тяготели к рационально-методологическим принципам и понятиям физики, механики. Как это на самом деле происходило можно проследить на историко-научном материале биологии. XVII- нач. XIX вв. - то период господства механической картины мира. Законы механики рассматриваются как универсальные и единые для всех отраслей естествознания. Эмпирические факты биологии, являющиеся фиксацией наблюдаемых в периоде единичных явлений, редуцируются к механическим закономерностям, Иными словами, способ формирования фактов в биологии строится на механистических представлениях о мире. Например, такие факты, как: "Птица, которую потребность влечет к воде, чтобы найти здесь себе жизненное пропитание, раздвигает пальцы на ногах, готовясь грести и плыть по водной поверхности"; "Кожа, соединяющая пальцы при основании, привыкает растягиваться благодаря этим беспрестанно повторяющимся раздвиганиям пальцев. Так, со временем образовались те широкие перепонки между пальцами уток, грей, какие видим сейчас", целиком детерминированы идеями механистического детерминизма. Это однозначно видно из интерпретации указанных фактов. "Частое пользование органом, обратившееся в привычку, увеличивает способность того органа, развивает его самого и сообщает ему размеры и силу действия"; "Неупотребление органа, сделавшееся постоянным вследствие усвоенных привычек, постепенно ослабляет этот орган и, в конце концов, приводит его к исчезновению и даже к полному уничтожению". Механистический подход к системе адаптации "животный организм-окружающая среда" дает соответствующий эмпирический материал.

mirznanii.com

12. Механистическая картина мира

Первая научная революция произошла в период конца XV – XVI в.в., в период, относящийся к эпохе Возрождения. Н. Коперник обосновывает утверждение о том, что Земля не является центром мироздания, что подорвало устоявшиеся религиозные догматы. На смену геоцентрической системы мира Птолемея приходит гелиоцентрическая система мира Н. Коперника. С появлением учения Н. Коперника, можно сказать, наука впервые указала на то, какую существенную роль она может играть в решении мировоззренческих проблем.

Последователь Коперника Галилео Галилей выступил также противником механики и астрономии Аристотеля. Он опровергал учение Аристотеля о том, что тяжелые тела падают быстрее, чем легкие. Он впервые использовал понятие инерции. Согласно господствовавшей тогда аристотелевской концепции понятие инерции не существовало и считалось, что всякое движение, кроме естественного, требует непрекращающегося воздействия, и прекращение воздействия приводит к немедленному прекращению движения. Галилей выступил против такой концепции.

Используя понятие инерции, Галилей объяснил, почему Земля при обращении вокруг Солнца и вращении вокруг своей оси сохраняет как атмосферу, так и все, что находится в атмосфере и на земной поверхности. Принцип относительности Галилея утверждает, что если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе координат, движущейся прямолинейно и равномерно относительно первой, т.е. в инерциальных системах отсчета. Все законы механики во всех инерциальных системах отсчета проявляются одинаково, в них пространство и время носят абсолютный характер.

В своих философских воззрениях, Галилей стоит на позициях новой основанной им механической натурфилософии, механистического естествознания. Он исходит из признания бесконечной и вечной Вселенной, всюду единой. Утверждает, что небесный мир состоит из таких же физических тел, как и Земля. Все явления природы, по его мнению, подчиняются одинаковым законам механики. Сама материя как реальная субстанция вещей состоит из абсолютно неизменных атомов, всевозможные ее проявления сводятся к чисто количественным свойствам, поэтому все в природе можно измерить и вычислить.

Выдающийся ученый И. Кеплер занимался исследованием небесной сферы и работал над составлением звёздных таблиц. И. Кеплер прославился, в первую очередь, формулировкой трех законов движения планет относительно солнца, которые представляли собой обобщение данных астрономических наблюдений. Кроме того, он разработал теорию солнечных и лунных затмений, предложил несколько способов их предсказания, уточнил величину расстояния между землей и солнцем…

Математическое описание физических закономерностей - французский ученый Рене Декарт (1596-1650 гг.). Декарт заложил основы аналитической геометрии, применил ее аппарат к описанию перемещения тел, разработал понятия переменной величины и функции. В «Началах философии», опубликованных в 1644 г., Декарт сформулировал три закона природы.

Первые два выражают принцип инерции, в третьем формулируется закон сохранения количества движения.

Велика роль французского ученого и в развитии астрономии, Вселенная рассматривалась им как саморазвивающаяся система. Первоначально она находилась в хаотическом состоянии, затем движение частиц материи приобрело характер центробежных вихревых движений, в результате которых образовались небесные тела, включая Солнце и планеты. Таким образом, возникновение Солнечной системы и всей Вселенной происходит, по Декарту, без божественного вмешательства, на основе законов природы.

Научное наследие И. Ньютона весьма обширно. Он разработал, независимо от Г.В. Лейбница, дифференциальное и интегральное исчисление, которым успешно пользовался при решении сложнейших задач в механике. Ему принадлежит открытие законов динамики и закона всемирного тяготения. Главное сочинение - “Математические начала натуральной философии” (1687 г.). В этой работе И. Ньютону удалось математически вывести все известные к тому времени факты механики земных и небесных тел, в том числе и кеплеровы законы движения планет.

Механистическая картина мира была основана на следующих принципах.

1. Мир строился на едином фундаменте — на законах механики Ньютона. Все наблюдаемые в природе превращения, а также тепловые явления на уровне микроявлений сводились к механике атомов и молекул, их перемещениям, столкновениям, сцеплениям, разъединениям.

2. В механистической картине мира все причинно-следственные связи однозначные, здесь господствует лапласовый детерминизм. В мире существует точность и возможность предопределения будущего.

3.В механистической картине мира отсутствует развитие — в целом таков, каким он был всегда. Механистическая картина мира фактически отвергала качественные изменения, сводя все к чисто количественным изменениям.

4. Механистическая картина исходила из представления, что микромир аналогичен макромиру. Считалось, что механика микромира может объяснить закономерности поведения атомов и молекул.

13. Зарождение и формирование эволюционных идей.

Этап зарождения и формирования эволюционных идей начался с 30-х гг. XIX в. и закончился в конце XIX — начале XX в. Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел главным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

Первая линия «подрыва» была связана с активизацией исследований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей и Д. Максвелл. Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления. Материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле.

Успехи электродинамики привели к созданию электромагнитной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов (законы Ампера, Ома, Био—Савара—Лапласа и др.). Стало формироваться убеждение в том, что основные законы мироздания — не законы механики, а законы электродинамики. Механистический подход к таким явлениям, как свет, электричество, магнетизм, не увенчался успехом, и электродинамика все чаще заменяла механику. Таким образом, работы в области электромагнетизма сильно подорвали механическую картину мира и положили начало ее крушению.

Второе направление «подрыва» механической картины мира - его начало связано с именами английского геолога Ч. Лайеля и французскими биологами Ж.-Б. Ламарком и Ж. Кювье.

Ч. Лайелъ в труде «Основы геологии» разработал учение о медленном и непрерывном изменении земной поверхности под влиянием постоянных геологических факторов. Он перенес нормативные принципы биологии в геологию, построив здесь теоретическую концепцию, которая впоследствии оказала влияние на биологию. Иначе говоря, принципы высшей формы он перенес (редуцировал) на познание низших форм.

Однако Земля для Лайеля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. Причем изменение — это у него лишь постепенные количественные изменения, без скачка, без качественных изменений. А это метафизический, «плоскоэволюционный» подход.

Ж.-Б. Ламарк создал первую целостную концепцию эволюции живой природы. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития.

Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теорией катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, что каждый период в истории Земли завершается мировой катастрофой — поднятием и опусканием материков, наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях появились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял.

Итак, уже в первые десятилетия XIX в. было фактически подготовлено «свержение» метафизического способа мышления, господствовавшего в естествознании. Особенно этому способствовали три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Дарвином эволюционной теории.

Теория клетки была создана немецкими учеными М. Шлейденом и Г. Шванном в 1838—1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ.

Открытие в 40-х гг. XIX в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Лещ) показало, что признававшиеся ранее изолированными так называемые «силы» — теплота, свет, электричество, магнетизм и т. п. — взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия как общая количественная мера различных форм движения материи не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую.

Теория Ч. Дарвина окончательно была оформлена в его главном труде «Происхождение видов путем естественного отбора» (1859). Эта теория показала, что растительные и животные организмы (включая человека) — не богом созданы, а являются результатом длительного естественного развития (эволюции) органического мира, ведут свое начало от немногих простейших существ, которые в свою очередь произошли от неживой природы. Тем самым были найдены факторы и причины эволюции — наследственность и изменчивость — и движущие факторы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений.

Впоследствии теорию Дарвина подтвердила генетика, показав механизм изменений, на основе которых и способна работать теория естественного отбора..

  1. Зарождение и формирование неклассической науки

Объектом исследования классического естествознания был знакомый человеку «макромир». Однако к концу XIX века на основе результатов исследования «микромира» (10-8см) начали складываться идеи неклассического естествознания.

    • Критика фундаментальных представлений и понятий. Эрнест Мах- критиковал абсолютность простр-ва и времени – это домыслы, заблуждение.Критика побудила Эйнштейна на размышления о природе простр-ва и времени

    • Изменения происходят и в социальном плане – наука становится более массовой, расширяется прикладной спектр, оказывает воздействие политика. Появляются научные центры.

    Особенности неклассической науки:

    • Переход от Лапласовского детерминизма к вероятностному детерминизму. Случайность – новый фундамент понимания природы.

    • Неклассическая наука понимает процесс познания не как созерцание, отражение объекта, а как конструирующую деятельность субъекта познания. Теория включала в себя взаимодействие объекта с субъектом. Нельзя отделить объект познания от средств.

    • Смена ориентиров на достижение практически значимых результатов.

    • Рушилось представление, что по мере элементаризации, Природа обнаруживает все большую простоту и единообразие. «Разборка» атома на составные детали эти надежды не оправдала. Во-первых, выявленные элементарные частицы были мало похожи на «мельчайшие частички вещества». В большей степени они вели себя как «сгустки энергии».

    • Качественно менял ракурс видения реальности введенный в СТО(Энштейн) постулат о постоянстве скорости света.

    Принятая в классической науке трактовка времени, как чистой длительности, сменилась здесь неразрывной увязкой временных и пространственных параметров бытия. Это, в частности, приводило к тому, что события, фиксируемые в одной системе отсчета как одновременные, в другой системе отсчета оказывались разнесенными во времени. Длительность из абсолютного континуума превратилась в относительную переменную, рассчитываемую в зависимости от пространства и скорости. Время, равномерно текущее для стороннего наблюдателя, внутри системы, двигающейся с большим ускорением, идет медленнее.

    • Теряла свою основательность и устойчивость некогда фундаментальная характеристика материальных тел – масса. Ее зависимость от скорости удостоверяло важнейшее следствие СТО, выраженное в знаменитой формуле Е = mC2. Становилось ясно, что при увеличении скорости движения материального тела его масса неограниченно возрастает, причем приближение к световому порогу делает ее бесконечной. Кроме того, установление эквивалентности энергии и массы позволяло выражать массу в единицах измерения энергии и наоборот.

    • Ещё одно отличие между классической и неклассической картинами мира по отношению ко вселенной: в классической теории планеты всегда были расположены определённы образом, совершая перемещения согласно законам тяготения, но в целом повторяя неизменные циклы, отсутствовало развитие.

    В неклассической. В начале 20-х годов прошлого века ученый А. Фридман опубликовал работы, в которых математическими методами, опираясь на уравнения общей теории относительности (ОТО), доказал, что открывающаяся нашему мысленному взору Вселенная не может быть стационарным объектом: она должна либо расширяться, либо сжиматься. В конце 20-х годов в серии наблюдений, осуществленных американским астрономом Э. Хабблом, был надежно удостоверен важнейший экспериментальный факт «разлета галактик». Вселенная расширялась! Причем, чем дальше от наблюдателя располагались галактики, тем с большей скоростью они удалялись. Из чего следовало, что материальный мир некогда начал свое развертывание из гипотетического «начала», характеризующегося нулевой размеренностью пространства и времени.

    Энштейн.Наиболее известны работы – теория относительности и теория квантовой природы излучения. Принципы СТО: 1) Все физические процессы в разных системах отсчета д/б одинаковыми. 2) Постоянство скорости света.

    Майкельсон – окончательно установил независимость скорости света от скоростей перемещения источника и наблюдателя. Принципы теории относительности, в которой этот экспериментальный факт естественно объяснялся, пришли на смену ньютоновской механике.

    Макс Планк– основатель квантовой физики. Доказал, что поглощение света происходит квантами. В 1918 г. Присуждена Нобелевская премия.

    Нильс Бор. Предложил теорию строения атома. В стационарном состоянии атом не излучает энергии. Излучение происходит тогда, когда электрон переходит с одной орбиты на другую, причем в виде фотона. Теория также описывает правила квантования, но не раскрывает их смысл. За правила квантования Бору была присуждена Нобел.премия.

    Луи де Бройль. Предложил, что атом, как и свет имеет двойственную природу, частицы могут описываться волновым процессом.

    Эрвин Шрёдингерполучил знаменитое уравнение волновой функции частицы, движущейся во внешней среде. Математически описал волну де Бройля. Объяснил многие детали устройства атомов. Стал ясен смысл правил квантования – оно означает, что в области движения электрона должно укладываться целое число волн де Бройля.

    Гейзинберг – соотношение неопределенностей. Невозможно одновременно измерять координаты и импульс.

    studfiles.net

    Механистическая картина мира

    Любые студенческие работы ДОРОГО, КАЧЕСТВЕННО

    100 руб. бонус за первый заказ. Всего 3 вопроса:

    Узнать стоимость работы

    Становление механистической картины мира справедливо связывают с именем Галилео Галилея, который установил законы движения свободно падающих тел и сформулировал механический принцип относительности. Но главная заслуга Галилея в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и

    математической обработкой результатов измерений. Если эксперименты спорадически ставились и раньше, то математический их анализ впервые систематически стал применять именно он.

    Подход Галилея к изучению природы принципиально отличался от ранее существовавшего натурфилософского способа, при котором для объяснения явлений природы придумывались априорные, не связанные с опытом и наблюдениями, чисто умозрительные схемы.

    Натурфилософия, что следует из ее названия, представляет собой попытку использовать общие философские принципы для объяснения природы. Такие попытки предпринимались еще с античной эпохи, когда недостаток конкретных данных философы стремились компенсировать общими философскими рассуждениями. Иногда при этом высказывались гениальные догадки, которые на многие столетия опережали результаты конкретных исследований. Достаточно напомнить хотя бы об атомистической гипотезе строения вещества, которая

    была выдвинута древнегреческим философом Левкиппом (V до н.э.) и более детально обоснована его учеником Демокритом (ок. 460 до н.э. - г. смерти неизв.), а также об идее эволюции, высказанной Эмпедоклом (ок. 490 - ок. 430 до н.э.) и его последователями.

    Однако после того как постепенно возникали конкретные науки и они отделялись от нерасчленненого философского знания, натурфилософские объяснения стали тормозом для развития науки.

    В этом можно убедиться, сравнив взгляды на движение Аристотеля и Галилея. Исходя из априорной натурфилософской идеи, Аристотель считал "совершенным" движение по кругу, а Галилей, опираясь на наблюдения и эксперимент, ввел понятие инерциального движения. По его

    мнению, тело, не подверженное воздействию каких-либо внешних сил, будет двигаться не по кругу, а равномерно по прямой траектории или оставаться в покое. Такое представление, конечно, - абстракция и идеализация, поскольку в действительности нельзя наблюдать такую ситуацию, чтобы на тело не действовали какие-либо силы. Однако эта абстракция является плодотворной, ибо она мысленно продолжает тот эксперимент, который приближенно можно осуществить в действительности, когда, изолируясь от действия целого ряда внешних сил, можно установить, что тело будет продолжать свое движение по мере уменьшения воздействия на него посторонних сил.

    Переход к экспериментальному изучению природы и математическая обработка результатов экспериментов позволили Галилею открыть законы движения свободно падающих тел. Принципиальное отличие нового метода исследования природы от натурфилософского состояло,

    следовательно, в том, что в нем гипотезы систематически проверялись опытом. Эксперимент можно рассматривать как вопрос, обращенный к природе. Чтобы получить на него определенный ответ, необходимо так сформулировать вопрос, чтобы получить на него вполне

    однозначный и определенный ответ. Для этого следует так построить эксперимент, чтобы по возможности максимально изолироваться от воздействия посторонних факторов, которые мешают наблюдению изучаемого явления в "чистом виде". В свою очередь гипотеза, представляющая собой вопрос к природе, должна допускать эмпирическую проверку выводимых из нее некоторых

    следствий. В этих целях, начиная с Галилея, стали широко использовать математику для количественной оценки результатов экспериментов.

    Таким образом, новое экспериментальное естествознание в отличие от натурфилософских догадок и умозрений прошлого стало развиваться в тесном взаимодействии теории и опыта, когда каждая гипотеза или теоретическое предположение систематически проверяются опытом и измерениями.

    Новый крупный шаг в развитии естествознания ознаменовался открытием законов движения планет. Если Галилей имел дело с изучением движения земных тел, то немецкий астроном Иоганн Кеплер (1571-1630) осмелился исследовать движения небесных тел, вторгся в область, которая раньше считалась запретной для науки. Кроме того, для своего исследования он не мог обратиться к эксперименту и поэтому вынужден был воспользоваться многолетними систематическим наблюдениями движения планеты Марс, сделанными датским астрономом Тихо Браге (1546-1601). Перепробовав множество вариантов, Кеплер остановился на гипотезе, что траекторией Марса, как и других планет, является не окружность, а эллипс. Результаты наблюдений Тихо Браге соответствовали этой гипотезе и тем самым подтверждали ее.

    Открытие законов движения планет Кеплером имело неоценимое значение для развития естествознания. Оно свидетельствовало, во-первых, о том, что между движениями земных и небесных тел не существует непреодолимой пропасти, поскольку все они подчиняются определенным естественным законам, во-вторых, сам путь открытия законов движения небесных тел в принципе не отличается от открытия законов земных тел. Правда, из-за невозможности осуществления экспериментов с небесными телами для исследования законов их движения

    пришлось обратиться к наблюдениям. Тем не менее и здесь исследование осуществлялось в тесном взаимодействии теории и наблюдения, тщательной проверке выдвигаемых гипотез измерениями движений небесных тел.

    Формирование классической механики и основанной на ней механистической картины мира происходило по двум направлениям:

    1) обобщение полученных ранее результатов и прежде всего законов движения свободно падающих тел, открытых Галилеем, а также законов движения планет, сформулированных Кеплером;

    2) создание методов для количественного анализа механического движения в целом.

    Теперь количественный подход к описанию движения кажется чем-то само собой разумеющимся, но в XVIII в. это было крупнейшим завоеванием научной мысли. Для сравнения достаточно от-

    метить, что китайская наука, несмотря на ее несомненные достижения в эмпирических областях (изобретение пороха, бумаги, компаса и другие открытия), так и не смогла подняться до установления количественных закономерностей движения. Решающую же роль в становлении механики сыграл, как уже отмечалось, экспериментальный метод, который обеспечил возможность проверять все догадки, предположения и гипотезы с помощью тщательно продуманных опытов.

    Ньютон выдвигает совершенно новый принцип исследования природы, согласно которому

    вывести два или три общих начала движения из явлений и после этого изложить, каким, образом свойства и действия всех телесных вещей вытекают из этих явных начал, - было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты.

    Эти начала движения и представляют собой основные законы механики, которые Ньютон точно

    формулирует в своем главном труде "Математические начала натуральной философии", опубликованном в 1687 г.

    Первый закон, который часто называют законом инерции, утверждает:

    Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

    Второй основной закон занимает в механике центральное место:

    Изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует.

    Третий закон Ньютона:

    Действию всегда есть равное и противоположно направленное противодействие, иначе взаимодействия двух тел друг на друга между собой равны и направлены в противопололожные стороны.

    Возникает вопрос: каким способом были открыты эти основные законы или принципы механики? Нередко говорят, что они получаются путем обобщения ранее установленных частных или даже специальных законов, какими являются, например, законы Галилея и Кеплера.

    Если рассуждать по законам логики, такой взгляд нельзя признать правильным, ибо не существует никаких индуктивных правил получения общих утверждений из частных. Ньютон считал, что принципы механики устанавливаются с помощью двух противоположных, но в тоже время взаимосвязанных методов - анализа и синтеза.

    Как в математике, так и в натуральной философии, - писал он, - исследование трудных предметов

    методом анализа всегда должно предшествовать методу соединения. Такой анализ состоит в производстве опытов и наблюдений, извлечении общих заключений из них посредством индукции и недопущении иных возражений против заключений, кроме полученных из опыта или других достоверных истин. Ибо гипотезы не должны рассматриваться в экспериментальной философии. И хотя аргументация на основании опытов не является доказательством общих заключений, однако это лучший путь аргументации, допускаемый природой вещей, и может считаться тем более сильным, чем общее индукция... Путем такого анализа мы можем переходить от соединений к ингридиентам, от движений - к силам, их производящим, и вообще от действий - к их причинам, от частных причин - к более общим, пока аргумент не закончится наиболее общей причиной.

    Таков метод анализа, синтез же предполагает причины открытыми и установленными в качестве принципов; он состоит в объяснении при помощи принципов явлений, происходящих от них, и доказательстве объяснений".

    Чтобы ясно оценить революционный переворот, осуществленный Ньютоном в механике и точном естествознании в целом, необходимо прежде всего противопоставить его метод принципов чисто умозрительным построениям прежней натурфилософии и широко распространенным в его время гипотезам о "скрытых" качествах. О натурфилософском подходе к изучению природы мы уже говорили, отметив, что в подавляющем большинстве такие взгляды были ничем не подкрепленными умозрениями и спекуляциями. И хотя в заголовке книги Ньютона тоже встречается термин "натуральная философия", в XVII и XVIII вв. он обозначал изучение природы, т. е. естествознание. Утверждение Ньютона, что гипотезы не должны рассматриваться в экспериментальной философии, было направлено против гипотез о "скрытых" качествах, подлинные же гипотезы, допускающие экспериментальную проверку, составляют основу

    и исходный пункт всех исследований в естествознании. Как нетрудно догадаться, сами принципы тоже являются гипотезами глубокого и весьма общего характера.

    Открытие принципов механики действительно означает подлинно революционный переворот, который связан с переходом от натурфилософских догадок и гипотез о "скрытых" качествах и т. п. спекулятивных измышлений к точному экспериментальному естествознанию, в котором все предположения, гипотезы и теоретические построения проверялись наблюдениями и опытом. Поскольку в механике отвлекаются от качественных изменений тел, постольку для ее анализа можно было широко пользоваться математическими абстракциями и созданным самим Ньютоном и одновременно Лейбницем (1646-1716) анализом бесконечно малых. Благодаря

    этому изучение механических процессов было сведено к точному математическому их описанию.

    Для такого описания необходимо и достаточно было задать координаты тела и его скорость (или импульс mv), а также и уравнение его движения. Все последующие состояния движущегося тела точно и однозначно определялись его первоначальным состоянием. Таким образом, задав это состояние, можно было определить любое другое его состояние как в будущем, так и в прошлом. Выходит, что время не оказывает никакого влияния на изменение движущихся тел, так что в уравнениях движения знак времени можно было менять на обратный. Очевидно, что подобное представление было идеализацией реальных процессов, поскольку оно абстрагируется от фактических изменений, происходящих с течением времени.

    Следовательно, для классической механики и механистической картины мира в целом характерна симметрия процессов во времени, которая выражается в обратимости времени. Отсюда легко возникает впечатление, что никаких реальных изменений при механическом перемещении тел не

    происходит. Задав уравнение движения тела, его координаты и скорость в некоторый момент времени, который часто называют начальным его состоянием, мы можем точно и однозначно определить его состояние в любой другой момент времени в будущем или прошлом. Сформулируем характерные особенности механистической картины мира.

    1. Все состояния механического движения тел по отношению ко времени оказываются в принципе

    одинаковыми, поскольку время считается обратимым.

    2. Все механические процессы подчиняются принципу строгого или жесткого детерминизма, суть

    которого состоит в признании возможности точного и однозначного определения состояния механической системы ее предыдущим состоянием.

    Согласно этому принципу, случайность целиком исключается из природы. Все в мире строго детерминировано (или определено) предшествующими состояниями, событиями и явлениями. При распространении указанного принципа на действия и поведение людей неизбежно приходят к фатализму. Сам окружающий нас мир при механистической картине превращается в грандиозную

    машину, все последующие состояния которой точно и однозначно определяются ее предшествующими состояниями.

    3. Пространство и время никак не связаны с движениями тел, они имеют абсолютный характер.

    В связи с этим Ньютон и вводит понятия абсолютного, или математического, пространства и времени. Такая картина напоминает представления о мире древних атомистов, которые считали, что атомы движутся в пустом пространстве. Подобно этому в ньютоновской механике пространство оказывается простым вместилищем движущихся в нем тел, которые не оказывают на

    него никакого влияния. Как мы покажем далее, такие представления были подвергнуты резкой критике в теории относительности.

    4. Тенденция свести закономерности более высоких форм движения материи к законам простейшей его формы- механическому движению.

    Такое стремление встретило критику со стороны биологов, медиков и некоторых химиков уже в XVIII в. Против него выступили также выдающиеся философы-материалисты Дени Дидро (1713-1784) и Поль Гольбах (1723-1789), не говоря уже о виталистах, которые при-

    писывали живым организмам особую "жизненную силу", наличием которой они отличаются якобы от неживых тел. Из курса философии вы уже знаете, что механицизм, пытавшийся подходить ко всем без исключения процессам с точки зрения принципов и масштабов механики, явился одной из предпосылок возникновения метафизического метода мышления.

    5. Связь механицизма с принципом дальнодействия, согласно которому действия и сигналы могут передаваться в пустом пространстве с какой угодно скоростью.

    Все перечисленные и некоторые другие особенности предопределили ограниченность механистической картины мира, которые преодолевались в ходе последующего развития естествознания.

    Электромагнитная картина мира

    Уже в прошлом веке физики дополнили механистическую картину мира электромагнитной. Электрические и магнитные явления были известны им давно, но изучались обособленно друг от друга. Дальнейшее их исследование показало, что между ними существует глубокая взаимосвязь, что заставило ученых искать эту связь и создать единую электромагнитную теорию. Действительно, датский ученый Эрстед (1777-1851), поместив над проводником, по которому идет электрический ток, магнитную стрелку, обнаружил, что она отклоняется от первоначального положения. Это привело ученого к мысли, что электрический ток создает магнитное поле.

    Позднее английский физик Майкл Фарадей (1791-1867), вращая замкнутый контур в магнитном поле, открыл, что в нем возникает электрический ток. На основе опытов Фарадея и других ученых английский физик Джеймс Клерк Максвелл (1831-1879) создал свою электромагнитную теорию. Таким путем было показано, что в мире существует не только вещество в виде тел, но и разнообразные физические поля. Одно из них было известно и во времена Ньютона и теперь называется гравитационным полем, а раньше рассматривалось просто

    как сила притяжения, возникающая между материальными телами. После того как объектом изучения физиков наряду с веществом стали разнообразные поля, картина мира приобрела более сложный характер. Тем не менее, это была картина классической физики, которая изучала знакомый нам макромир. Положение коренным образом изменилось, когда ученые перешли к исследованию процессов в микромире. Здесь их ожидали новые необычайные открытия и явления.

    students-library.com

    Физическая и механистическая картина мира

    Физическая картина мира в ее развитии

    История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI - XVII вв., было связано долгое время с развитием физики. Именно физика была и остается сегодня наиболее развитой и систематизированной естественной наукой. Поэтому, когда возникло мировоззрение европейской цивилизации Нового времени, складывалась классическая картина мира, естественным было обращение к физике, ее концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она могла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX веке смогли поставить перед собой эту задачу (создание химической и биологической картин мира). Поэтому, начиная разговор о конкретных достижениях естествознания, мы начнем его с физики, с картины мира, созданной этой наукой.

    Понятие “физическая картина мира” употребляется давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания - самое общее теоретическое знание в физике (система понятий, принципов и гипотез), служащее исходной основой для построения теорий. Физическая картина мира:

      ► обобщает все ранее полученные знания о природе;

      ► вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы (которых до этого не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы ломаются, новые возникают, картина мира меняется).

    Развитие самой физики непосредственно связано с физической картиной мира. При постоянном возрастании количества опытных данных картина мира весьма длительное время остается относительно неизменной. С изменением физической картины мира начинается новый этап в развитии физики с иной системой исходных понятий, принципов, гипотез и стиля мышления. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в крушении старой картины мира и в появлении новой. В пределах данного этапа развитие физики идет эволюционным путем, без изменения основ картины мира. Оно состоит в реализации возможностей построения новых теорий, заложенных в данной картине мира. При этом она может эволюционировать, достраиваться, оставаясь в рамках определенных конкретно-физических представлений о мире.

    Ключевым в физической картине мира служит понятие “материя”, на которое выходят важнейшие проблемы физической науки. Поэтому смена физической картины мира связана со сменой представлений о материи. В истории физики это происходило два раза. Сначала был совершен переход от атомистических, корпускулярных (прерывных, дискретных) представлений о материи к континуальным (непрерывным). Затем, вXX веке, континуальные представления были заменены современными квантово-полевыми. Поэтому можно говорить о трех последовательно сменявших друг друга физических картинах мира.

    Механистическая картина мира

    Она складывается в результате научной революции к. XVI-н. XVII вв., оформляется как целостное образование к ХVIII в., и господствует на протяжении XIX в., на основе работ Г. Галилея и П. Гассенди, восстановивших атомизм древних философов, исследований Р. Декарта и обобщений И. Ньютона, завершивших построение новой картины мира, сформулировавших основные идеи, понятия и принципы.

    Основу механической картины мира составил атомизм, который весь мир, включая и человека, понимал как совокупность огромного числа неделимых частиц - атомов, перемещающихся в пространстве и времени.

    Ключевым понятием механистической картины мира было понятие движения. Именно законы движения Ньютон считал фундаментальными законами мироздания. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Таким образом, впервые МКМ дает научное обоснование понятию движения материи. Движение трактуется как вечное и естественное состояние тел, как основное их состояние, что прямо противоположно аристотелевским представлениям, в которых движение рассматривалось как привнесенное извне. Вместе с тем в классической механике абсолютизируется механическое движение (как перемещение тел в пространстве), к которому пытались свести все многообразие видов движения в природе.

    Классическая физика выработала своеобразное понимание материи, сведя ее к вещественной, или весовой (массе). Масса является мерой инертности, при этом, она остается неизменной при любых условиях движения и при любых скоростях. Универсальным свойством тел является тяготение.

    Решая проблемы взаимодействия тел, Ньютон предложил принцип дальнодействия. Согласно этому принципу, взаимодействие между телами происходит мгновенно на любом расстоянии, без каких-либо материальных посредников. Концепция дальнодействия тесно связана с пониманием пространства и времени как особых сред, вмещающих взаимодействующие тела. Ньютон предложил концепцию абсолютного пространства и времени. Пространство представлялось безграничным “черным ящиком”, вмещающим все тела в мире, но если бы эти тела вдруг исчезли, пространство все равно бы осталось. Аналогично, в образе текущей реки, представлялось и время, также существующее абсолютно независимо от материи. По Ньютону, пространство – это абсолютное неподвижное однородное изотропное бесконечное вместилище всех тел (то есть пустота). А время – это чистая однородная равномерная и непрерывная длительность процессов. Абсолютность времени выражается его одинаковостью во всех точках Вселенной.

    В механической картине мира любые события жестко предопределялись законами механики. Случайность в принципе исключалась из этой картины мира. Жизнь и разум в механической картине мира не обладали никакой качественной спецификой. Поэтому присутствие человека в мире не меняло ничего. Если бы человек однажды исчез с лица земли, мир продолжал бы существовать, как ни в чем не бывало. Иначе говоря, во взглядах естествоиспытателей господствовал механистический детерминизм –учение о всеобщей предопределенности и обусловленности явлений природы.Все механические процессы в классических представлениях подчинены принципу строгого детерминизма, т.е. возможно точное предсказание поведения механической системы, если известно ее предыдущее состояние.

    На основе механистической картины мира в XVIII - начале V1Х вв. была разработана земная, небесная и молекулярная механика. Быстрыми темпами шло развитие техники. Это привело к абсолютизации механической картины мира, к тому, что она стала рассматриваться в качестве универсальной.

    В это же время в физике начали накапливаться эмпирические данные, противоречащие механистической картине мира. Так, наряду с рассмотрением системы материальных точек, полностью соответствовавшей корпускулярным представлениям о материи, пришлось ввести понятие сплошной среды, связанное по сути дела, уже не с корпускулярными, а с континуальными представлениями о материи. Так, для объяснения световых явлений вводилось понятие эфира - особой тонкой и абсолютно непрерывной световой материи. В XIX в. методы механики были распространены на область тепловых явлений, электричества и магнетизма. Казалось бы, это свидетельствовало о больших успехах механического понимания мира в качестве общей исходной основы науки. Но при попытке выйти за пределы механики материальных точек приходилось вводить все новые искусственные допущения, которые постепенно готовили крушение механической картины мира. Аналогично световым явлениям, для объяснения теплоты, электричества и магнетизма вводились понятия теплорода, электрической и магнитной жидкости как особых разновидностей сплошной материи. Хотя механистический подход к этим явлениям оказался неприемлемым, опытные факты искусственно подгонялись под механистическую картину мира. Попытки построить атомистическую модель эфира продолжались еще и вXX веке. Эти факты, не укладывающиеся в русло механистической картины мира, свидетельствовали о том, что противоречия между становившейся системой взглядов и данными опыта оказались непримиримыми. Физика нуждалась в существенном изменении представлений о материи, в смене физической картины мира.

    Новизна современной физической картины мира состоит в следующем:

      ► Показана глубокая диалектичность природы, невозможность свести материю к прерывному либо к непрерывному, к вещественному либо невещественному, т.к. материя прерывна и непрерывна, и вещественна и невещественна, и качественна и количественна одновременно.

      ► Значительно расширяется понимание движения, которое включает универсальные типы физического взаимодействия. Известно четыре вида фундаментальных физических взаимодействий: 1. Гравитационное; 2. Электромагнитное; 3. Ядерное сильное; 4. Ядерное слабое. Они описываются на основе принципа близкодействия: взаимодействия передаются соответствующими полями от точки к точке, скорость передачи взаимодействия всегда конечна и не может превышать скорости света в вакууме (примерно 300 000 км/с).

      ► Окончательно утверждаются представления об относительности пространства и времени, зависимость их от характера движения материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.

      ► Важным является тезис о равенстве весовой (тяжелой) и инертной масс. Отсюда следует вывод об эквивалентности массы и энергии: энергия обладает массой, а масса превращается в энергию – (Е=mc2)

      ► Спецификой квантово-полевых представлений о закономерности и причинности является то, что они выступают в вероятностной форме, в виде так называемых статистических законов. Они соответствуют более глубокому уровню познания природных закономерностей.

      ► Квантово-полевая картина мира впервые включает в себя наблюдателя, от присутствия которого зависит получаемая картина мира. Более того, сегодня считается, что наш мир таков по своей природе, что появление и существование человека в нем стало закономерным результатом эволюции Вселенной.

    Квантово-полевая (квантово-релятивистская) картина мира и в настоящее время находится в состоянии становления, и с каждым годом к ней добавляются новые элементы, выдвигаются новые гипотезы, создаются и развиваются новые теории. В конце 60–х годов выдвинута идея кварков, как гипотетических проточастиц, из которых формируются элементарные частицы (Г. Цвейг, М. Гелл-Ман). Заветная мечта всех физиков - выявить универсальность всех фундаментальных сил, объединить все физические взаимодействия в одной теории. Объединение электромагнитного и слабого взаимодействия в единое электрослабое взаимодействие стало первым обнадеживающим успехом на этом пути. Есть попытки создать теорию Большого объединения (так называется теория объединения электромагнитного, слабого и сильного взаимодействий). Еще более грандиозна идея объединения всех четырех фундаментальных взаимодействий, включая гравитацию. Соответствующие теоретические построения называют суперобъединением или теорией супервзаимодействия. Сегодня физики считают, что они смогут создать эту теорию на основе появившейся недавно теории суперструн. Пионерами в создании этой теории явились М. Грин (Великобритания) и Дж. Шварц (США). Эта теория должна объединить все фундаментальные взаимодействия при сверхвысоких энергиях.

    

    biofile.ru

    Механистическая картина мира

    ⇐ ПредыдущаяСтр 2 из 24Следующая ⇒

    Первая естественнонаучная картина мира сформировалась на основе изучения простейшей, механической формы движения материи. Она исследует законы перемещения земных и небесных тел в пространстве и времени. В дальнейшем, когда эти законы и принципы были перенесены на другие явления и процессы, они стали основой механистической картины мира.

    Созданием классической механики наука обязана Ньютону, но почву для него подготовили Галилей и Кеплер, с краткой характеристики их научных результатов мы и начнем эту главу.

    3.1. Галилей и Кеплер - научные предшественники Ньютона

    Становление механистической картины мира справедливо связывают с именем Г. Галилея, который установил законы движения свободно падающих тел и сформулировал понятие об инерциальном движении и механический принцип относительности. Но главная заслуга Галилея состоит в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерением изучаемых величин и математической обработкой их результатов. Если эксперименты спорадически ставились и раньше, то математический их анализ впервые систематически стал применять именно Галилей.

    Подход Галилея к изучению природы принципиально отличался от ранее существовавшего натурфилософского подхода, при котором для объяснения явлений природы придумывались априорные, т.е. не связанные с опытом и наблюдениями, чисто умозрительные схемы.

    Натурфилософия, как показывает ее название, представляет собой попытку использовать априорные философские принципы для объяснения конкретных явлений природы. Такие попытки предпринимались, начиная еще с античной эпохи, когда недостаток конкретных

    данных ученые стремились компенсировать общими философскими рассуждениями. Иногда при этом высказывались гениальные догадки, которые на многие столетия опережали результаты конкретных исследований. Достаточно напомнить хотя бы об атомистической гипотезе строения вещества, которая была выдвинута древнегреческим философом Левкиппом (V в. до н.э.) и более детально разработана его учеником Демокритом. Однако, по мере того как постепенно возникали конкретные науки и отделялись от нерасчлененного философского знания, натурфилософские объяснения стали тормозом для развития науки. В этом можно убедиться, сравнив взгляды на движение Аристотеля и Галилея.

    Исходя из априорной натурфилософской идеи, Аристотель считал «совершенным» движение по кругу, а Галилей, опираясь на наблюдения и мысленный эксперимент, ввел понятие инерциального движения. По его мнению, тело, не подверженное воздействию каких-либо внешних сил, будет двигаться не по кругу, а равномерно по прямой траектории или оставаться в покое. Такое представление, конечно, является абстракцией и идеализацией, поскольку в действительности нельзя наблюдать такой случай, чтобы на тело не действовали какие-либо силы. Однако эта абстракция является плодотворной, ибо она мысленно продолжает тот эксперимент, который приближенно можно осуществить в действительности, когда, по мере устранения воздействия на тело целого ряда внешних сил (трения, сопротивления воздуха и т.п.), можно установить, что оно будет продолжать свое движение. С помощью мысленного эксперимента, служащего продолжением реального эксперимента, можно вообразить, что при отсутствии воздействия любых внешних сил оно будет двигаться равномерно по прямой траектории бесконечно.

    Переход к экспериментальному изучению природы и математической обработке результатов экспериментов позволил Галилею открыть законы движения свободно падающих тел. Принципиальное отличие нового метода исследования природы от натурфилософского подхода состояло, следовательно, в том, что в нем гипотезы систематически проверялись опытом.

    Эксперимент можно рассматривать как вопрос, обращенный к природе. При этом необходимо так сформулировать вопрос к природе, чтобы получить на него вполне однозначный и определенный ответ.

    Экспериментальный метод представляет собой активное вмешательство в реальные процессы и явления природы, а не пассивное их наблюдение. Для этого следует так построить эксперимент, чтобы по

    возможности максимально изолироваться от воздействия посторонних факторов, которые мешают наблюдать изучаемое явление в «чистом виде». В свою очередь, гипотеза, представляющая собой вопрос к природе, должна допускать эмпирическую проверку выводимых из нее некоторых следствий. В этих целях, начиная с Галилея, стали широко использовать математику для количественной оценки результатов экспериментов.

    Таким образом, новое экспериментальное естествознание в отличие от натурфилософских догадок и умозрений прошлого стало развиваться в тесном взаимодействии теории и опыта, когда каждая гипотеза или теоретическое утверждение систематически проверяются опытом и измерениями. Именно благодаря этому Галилею удалось опровергнуть прежнее предположение, высказанное еще Аристотелем, что путь падающего тела пропорционален его скорости. Предприняв эксперименты с падением тяжелых тел (пушечных ядер), Галилей убедился, что этот путь пропорционален их ускорению, равному 9,81 м/с2. Из астрономических достижений Галилея следует отметить открытие спутников Юпитера, а также обнаружение пятен на Солнце и гор на Луне.

    Новый крупный шаг в развитии естествознания ознаменовался открытием законов движения планет. Если Галилей имел дело с изучением движения земных тел, то немецкий астроном И. Кеплер (1571— 1630) начал исследовать движения небесных тел, а тем самым осмелился вторгнуться в область, которая раньше считалась запретной для науки. Конечно, для этого он не мог обратиться к эксперименту и поэтому для определения орбит и законов движения планет вынужден был воспользоваться многолетними систематическими наблюдениями движения планеты Марс, сделанными датским астрономом Т. Браге (1546—1601). Перепробовав множество вариантов, Кеплер остановился на гипотезе, что траекторией Марса, как и других планет, является не окружность, как думали до него, а эллипс. Результаты наблюдений Браге соответствовали этой гипотезе и, следовательно, подтверждали ее, поэтому можно было уверенно распространить полученный результат на орбиты других планет.

    Открытие законов движения планет Кеплером имело неоценимое значение для развития естествознания. Оно свидетельствовало, во-первых, о том, что между движениями земных и небесных тел не существует непреодолимой пропасти, так как они подчиняются определенным естественным законам; во-вторых, сам способ открытия законов движения небесных тел в принципе не отличается от открытия законов движения земных тел.

    Однако из-за невозможности осуществления экспериментов с небесными телами для исследования законов их движения пришлось обратиться к систематическим наблюдениям. Тем не менее и здесь исследования осуществлялись в тесном взаимодействии гипотез и наблюдений, с последующей тщательной проверкой выдвигаемых гипотез с помощью измерения движений небесных тел.

    3.2. Классическая механика Ньютона

    В своей работе по созданию теоретической механики Ньютон опирался прежде всего на открытые Галилеем принцип инерции и закон свободного падения тел. Принцип инерции относится лишь к случаям, когда на тело не действуют внешние силы. Но в реальном мире вряд ли можно наблюдать такие ситуации. Об этом свидетельствует, в частности, закон свободного падения тел.

    Однако этот закон является лишь частным случаем прямолинейного равноускоренного движения тел под воздействием силы тяжести. Ньютон же поставил своей целью найти общий закон движения тел, на которые действуют любые силы, а их траектории могут быть самыми разными. Поскольку движение тела зависит от приложенной к нему силы, а сила придает телу ускорение, постольку необходимо было найти количественный, математический метод для определения ускорения. Поэтому формирование классической механики происходило по двум направлениям:

    1) обобщения полученных ранее результатов, и прежде всего законов движения свободно падающих тел, открытых Галилеем, а также законов движения планет, сформулированных Кеплером;

    2) создания методов для количественного, математического анализа механического движения в целом.

    Известно, что Ньютон создал свой вариант дифференциального и интегрального исчислений непосредственно для решения основных проблем механики: определения мгновенной скорости движения как производной от пути по времени и ускорения как производной от скорости по времени, или второй производной. Благодаря этому ему удалось точно сформулировать основные законы динамики и закон всемирного тяготения. Теперь количественный подход к описанию движения кажется чем-то само собой разумеющимся, но в XVII— XVIII вв. это было крупнейшим завоеванием научной мысли. Для сравнения достаточно отметить, что китайская наука, несмотря на ее несомненные достижения в эмпирических областях (изобретение по-

    роха, бумаги, компаса и др.), так и не смогла в то время подняться до установления количественных закономерностей движения.

    Решающую же роль в становлении механики сыграл, как уже отмечалось, экспериментальный метод, который обеспечил возможность проверять все догадки, предположения и гипотезы с помощью тщательно продуманных опытов.

    Ньютон, как и его предшественники, придавал большое значение наблюдениям и эксперименту, видя в них важнейший критерий для отделения ложных гипотез от истинных. Поэтому он резко выступал против допущения так называемых скрытых качеств, с помощью которых последователи Аристотеля и натурфилософы вообще пытались объяснить многие явления и процессы природы.

    «Сказать, что каждый род вещей наделен особым скрытым качеством, при помощи которого он действует и производит эффекты, — указывал Ньютон, — значит ничего не сказать».

    В связи с этим он выдвигает совершенно новый принцип исследования природы, который теперь характеризуют как метод принципов, а сам Ньютон называл их началами.

    «Вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, — было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты».

    Эти начала движения и представляют собой основные законы механики, которые Ньютон точно формулирует в своем главном труде «Математические начала натуральной философии», опубликованном в 1687 г. Встречающийся в заглавии этой книги термин «натуральная философия» в XVII—XVIII вв. обозначал физику, важнейшей частью которой считалась механика. С изложения основных ее законов он и начинает свой труд.

    Первый закон, который часто называют законом инерции, постулирует:

    Читайте также:

    lektsia.com

    Механистическая картина мира

    Механистическая картина мира – картина мира, занимавшая господствующее положение в умах и настроениях в XVI-XVIII вв., что было обусловлено особым положением механики как науки. Ее разделяли многие философы и естествоиспытатели: Ньютон, Лаплас, Гоббс, Декарт и др. В основе механистического мировоззрения – представление о мире как гигантском механизме, законы функционирования которого адекватно описываются законами механики.

     

    Становление механистической картины мира происходило под влиянием метафизических материалистических представлений о материи и формах ее существования. Ее основу составили идеи и законы механики, которая в XVII в. была наиболее разработанным разделом физики. По сути, именно механика явилась первой фундаментальной физической теорией. Идеи, принципы и теории механики представляли собой совокупность наиболее существенных знаний о физических закономерностях, наиболее полно отражали физические процессы в природе.

    В широком смысле механика изучает механическое движение материальных тел и происходящее при этом взаимодействие между ними. Под механическим движением понимают изменение с течением времени взаимного положения тел или частиц в пространстве. Примерами механического движения в природе являются движение небесных тел, колебания земной коры, воздушные и морские течения и т.п. Происходящие в процессе механического движения взаимодействия представляют собой те действия тел друг на друга, в результате которых происходит изменение скоростей перемещения этих тел в пространстве или их деформация.

    Важнейшими понятиями механики как фундаментальной физической теории стали материальная точка – тело, формы и размеры которого не существенны в данной задаче; абсолютно твердое тело – тело, расстояние между любыми точками которого остается неизменным, а его деформацией можно пренебречь. Оба вида материальных тел характеризуются с помощью следующих понятий: масса – мера количества вещества; вес – сила, с которой тело действует на опору. Масса всегда остается постоянной, вес же может меняться. Эти понятия выражаются через следующие физические величины: координаты, импульсы, энергию, силу.

    Основу механической картины мира составил атомизм – теория, которая весь мир, включая человека, рассматривала как совокупность огромного числа неделимых материальных частиц – атомов. Они перемещались в пространстве и времени в соответствии с немногими законами механики. Материя – это вещество, состоящее из мельчайших, неделимых, абсолютно твердых движущихся частиц (атомов). Это и есть корпускулярное представление о материи.

    Законы механики, которые регулировали как движение атомов, так и движение любых материальных тел, считались фундаментальными законами мироздания. Поэтому ключевым понятием механической картины мира было понятие движения, которое понималось как механическое перемещение. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Единственной формой движения является механическое движение, т.е. изменение положения тела в пространстве с течением времени. Любое движение можно представить как сумму пространственных перемещений. Движение объяснялось на основе трех законов Ньютона. Все состояния механического движения тел по отношению ко времени оказываются в принципе одинаковыми, поскольку время считается обратимым. Закономерности более высоких форм движения материи должны сводиться к законам простейшей ее формы – механическому движению.

    Все многообразие взаимодействий механическая картина мира сводила только к гравитационному, которое означало наличие сил притяжения между любыми телами; величина этих сил определялась законом всемирного тяготения. Поэтому, зная массу одного тела и силу гравитации, можно определить массу другого тела. Гравитационные силы являются универсальными, т.е. они действуют всегда и между любыми телами и сообщают любым телам одинаковое ускорение.

    Решая проблему взаимодействия тел, Исаак Ньютон предложил принцип дальнодействия. Согласно этому принципу взаимодействие между телами происходит мгновенно на любом расстоянии, без материальных посредников, т.е. промежуточная среда в передаче взаимодействия участия не принимает.

    Концепция дальнодействия тесно связана с пониманием пространства и времени как особых сред, вмещающих взаимодействующие тела. Ньютон предложил концепцию абсолютного пространства и абсолютного времени. Абсолютное пространство представлялось большим «черным ящиком», универсальным вместилищем всех материальных тел в природе. Но даже если бы все эти тела вдруг исчезли, абсолютное пространство все равно бы осталось. Аналогично, в образе текущей реки, представлялось и абсолютное время. Оно становилось универсальной длительностью всех процессов во Вселенной. И абсолютное пространство, и абсолютное время существуют совершенно независимо от материи, из чего следует, что пространство, время и материя представляют собой три не зависящих друг от друга сущности.

    Таким образом, в соответствии с механической картиной мира Вселенная представляла собой хорошо отлаженный механизм, действующий по законам строгой необходимости, в котором все предметы и явления связаны между собой жесткими причинно-следственными отношениями. В таком мире нет случайностей – она полностью исключалась из картины мира. Случайным было только то, причин чего мы пока не знали. Но поскольку мир рационален, а человек наделен разумом, то, в конце концов, он может получить полное и исчерпывающее знание о бытии. Такой жесткий детерминизм находил свое выражение в форме динамических законов.

    Жизнь и разум в механистической картине мира не обладали никакой качественной спецификой. Человек в этой картине мира рассматривался как природное тело в ряду других тел и поэтому оставался необъяснимым в своих «невещественных» качествах. Так что присутствие человека в мире не меняло ничего. Если бы человек однажды исчез с лица земли, мир продолжал бы существовать как ни в чем не бывало.

    По сути дела, классическое естествознание не стремилось постичь человека. Подразумевалось, что мир природный, в котором нет ничего человеческого, можно описать объективно, и такое описание будет точной копией реальности. Рассмотрение человека как одного из винтиков хорошо отлаженной машины автоматически устраняло его из данной картины мира.

    На основе механической картины мира в XVIII – начале XIX в. была разработана земная, небесная и молекулярная механика. Быстрыми темпами шло развитие техники. Это привело к абсолютизации механистической картины мира, и она стала рассматриваться в качестве универсальной.

    Развитие механистической картины мира было обусловлено в основном развитием механики. Успех механики Ньютона в значительной мере способствовал абсолютизации ньютоновских представлений, что выразилось в попытках свести все многообразие явлений природы к механической форме движения материи. Такая точка зрения получила название механистического материализма (механицизм). Однако развитие физики показало несостоятельность такой методологии, поскольку описать тепловые, электрические и магнитные явления с помощью законов механики, а также движение атомов и молекул этих физических явлений оказалось невозможно. В результате в XIX в. в физике наступил кризис, который свидетельствовал, что физика нуждалась в существенном изменении своих взглядов на мир.

    Оценивая механистическую картину мира как один из этапов развития физической картины мира, необходимо иметь в виду, что с развитием науки основные положения механистической картины мира не были просто отброшены.

    Развитие науки лишь раскрыло относительный характер механистической картины мира.

    Несостоятельной оказалась не сама механистическая картина мира, а ее исходная философская идея – механицизм. В недрах механистической картины мира стали складываться элементы новой – электромагнитной – картины мира.

    stydopedia.ru


    Evg-Crystal | Все права защищены © 2018 | Карта сайта